phpOMS/Math/Functions.php
Dennis Eichhorn 78bc28b045 Draft
All these files need further edits + other optimization files + moving
of files
2016-03-13 21:49:01 +01:00

220 lines
4.9 KiB
PHP

<?php
/**
* Orange Management
*
* PHP Version 7.0
*
* @category TBD
* @package TBD
* @author OMS Development Team <dev@oms.com>
* @author Dennis Eichhorn <d.eichhorn@oms.com>
* @copyright 2013 Dennis Eichhorn
* @license OMS License 1.0
* @version 1.0.0
* @link http://orange-management.com
*/
namespace phpOMS\Math;
/**
* Well known functions class.
*
* @category Framework
* @package phpOMS\DataStorage\Database
* @author OMS Development Team <dev@oms.com>
* @author Dennis Eichhorn <d.eichhorn@oms.com>
* @license OMS License 1.0
* @link http://orange-management.com
* @since 1.0.0
*/
class Functions
{
/**
* Calculate gammar function value.
*
* Example: (7)
*
* @param int $k Variable
*
* @return int
*
* @since 1.0.0
* @author Dennis Eichhorn <d.eichhorn@oms.com>
*/
public static function getGammaInteger(int $k) : int
{
return self::fact($k - 1);
}
/**
* Calculate gammar function value.
*
* Example: (7, 2)
*
* @param int $n Factorial upper bound
* @param int $start Factorial starting value
*
* @return int
*
* @since 1.0.0
* @author Dennis Eichhorn <d.eichhorn@oms.com>
*/
public static function fact(int $n, int $start = 1) : int
{
$fact = 1;
for ($i = $start; $i < $n + 1; $i++) {
$fact *= $i;
}
return $fact;
}
/**
* Calculate binomial coefficient
*
* Algorithm optimized for large factorials without the use of big int or string manipulation.
*
* Example: (7, 2)
*
* @param int $n
* @param int $k
*
* @return int
*
* @since 1.0.0
* @author Dennis Eichhorn <d.eichhorn@oms.com>
*/
public static function binomialCoefficient(int $n, int $k) : int
{
$max = max([$k, $n - $k]);
$min = min([$k, $n - $k]);
$fact = 1;
$range = array_reverse(range(1, $min));
for ($i = $max + 1; $i < $n + 1; $i++) {
$div = 1;
foreach ($range as $key => $d) {
if ($i % $d === 0) {
$div = $d;
unset($range[$key]);
break;
}
}
$fact *= $i / $div;
}
$fact2 = 1;
foreach ($range as $d) {
$fact2 *= $d;
}
return $fact / $fact2;
}
public static function ackermann(int $m, int $n)
{
if($m === 0) {
return $n+1;
} elseif($n === 0) {
return self::ackermann($m-1, 1);
}
return ackermann($m-1, ackermann($m, $n-1));
}
public static function isSquare(int $x) {
$goodMask; // 0xC840C04048404040 computed below
for ($i = 0; $i < 64; ++$i) {
$goodMask |= PHP_INT_MIN >>> ($i*$i);
}
// This tests if the 6 least significant bits are right.
// Moving the to be tested bit to the highest position saves us masking.
if ($goodMask << $x >= 0) return false;
$numberOfTrailingZeros = self::countTrailingZeros($x);
// Each square ends with an even number of zeros.
if (($numberOfTrailingZeros & 1) !== 0) return false;
$x >>= $numberOfTrailingZeros;
// Now x is either 0 or odd.
// In binary each odd square ends with 001.
// Postpone the sign test until now; handle zero in the branch.
if (($x&7) != 1 | $x <= 0) return $x === 0;
// Do it in the classical way.
// The correctness is not trivial as the conversion from long to double is lossy!
$tst = (int) sqrt($x);
return $tst * $tst == $x;
}
public static function countTrailingZeros(int $n) : int
{
$count = 0;
while ($n !== 0) {
if ($n & 1 == 1) {
break;
} else {
$count++;
$n = $n >> 1;
}
}
return $count;
}
public static function greatestCommonDivisor(int $n, int $m) : int
{
while(true) {
if($n === $m) {
return $m;
} if($n > $m) {
$n -= $m;
} else {
$m -= $n;
}
}
}
public static function invMod($a,$n){
if ($n < 0) {
$n = -$n;
}
if ($a < 0) {
$a = $n - (-$a % $n);
}
$t = 0;
$nt = 1;
$r = $n;
$nr = $a % $n;
while ($nr != 0) {
$quot = intval($r/$nr);
$tmp = $nt;
$nt = $t - $quot*$nt;
$t = $tmp;
$tmp = $nr;
$nr = $r - $quot*$nr;
$r = $tmp;
}
if ($r > 1) {
return -1;
}
if ($t < 0) {
$t += $n;
}
return $t;
}
}