* @author Dennis Eichhorn * @copyright 2013 Dennis Eichhorn * @license OMS License 1.0 * @version 1.0.0 * @link http://orange-management.com */ namespace phpOMS\Math; /** * Well known functions class. * * @category Framework * @package phpOMS\DataStorage\Database * @author OMS Development Team * @author Dennis Eichhorn * @license OMS License 1.0 * @link http://orange-management.com * @since 1.0.0 */ class Functions { /** * Calculate gammar function value. * * Example: (7) * * @param int $k Variable * * @return int * * @since 1.0.0 * @author Dennis Eichhorn */ public static function getGammaInteger(int $k) : int { return self::fact($k - 1); } /** * Calculate gammar function value. * * Example: (7, 2) * * @param int $n Factorial upper bound * @param int $start Factorial starting value * * @return int * * @since 1.0.0 * @author Dennis Eichhorn */ public static function fact(int $n, int $start = 1) : int { $fact = 1; for ($i = $start; $i < $n + 1; $i++) { $fact *= $i; } return $fact; } /** * Calculate binomial coefficient * * Algorithm optimized for large factorials without the use of big int or string manipulation. * * Example: (7, 2) * * @param int $n * @param int $k * * @return int * * @since 1.0.0 * @author Dennis Eichhorn */ public static function binomialCoefficient(int $n, int $k) : int { $max = max([$k, $n - $k]); $min = min([$k, $n - $k]); $fact = 1; $range = array_reverse(range(1, $min)); for ($i = $max + 1; $i < $n + 1; $i++) { $div = 1; foreach ($range as $key => $d) { if ($i % $d === 0) { $div = $d; unset($range[$key]); break; } } $fact *= $i / $div; } $fact2 = 1; foreach ($range as $d) { $fact2 *= $d; } return $fact / $fact2; } public static function ackermann(int $m, int $n) { if($m === 0) { return $n+1; } elseif($n === 0) { return self::ackermann($m-1, 1); } return ackermann($m-1, ackermann($m, $n-1)); } public static function isSquare(int $x) { $goodMask; // 0xC840C04048404040 computed below for ($i = 0; $i < 64; ++$i) { $goodMask |= PHP_INT_MIN >>> ($i*$i); } // This tests if the 6 least significant bits are right. // Moving the to be tested bit to the highest position saves us masking. if ($goodMask << $x >= 0) return false; $numberOfTrailingZeros = self::countTrailingZeros($x); // Each square ends with an even number of zeros. if (($numberOfTrailingZeros & 1) !== 0) return false; $x >>= $numberOfTrailingZeros; // Now x is either 0 or odd. // In binary each odd square ends with 001. // Postpone the sign test until now; handle zero in the branch. if (($x&7) != 1 | $x <= 0) return $x === 0; // Do it in the classical way. // The correctness is not trivial as the conversion from long to double is lossy! $tst = (int) sqrt($x); return $tst * $tst == $x; } public static function countTrailingZeros(int $n) : int { $count = 0; while ($n !== 0) { if ($n & 1 == 1) { break; } else { $count++; $n = $n >> 1; } } return $count; } public static function greatestCommonDivisor(int $n, int $m) : int { while(true) { if($n === $m) { return $m; } if($n > $m) { $n -= $m; } else { $m -= $n; } } } public static function invMod($a,$n){ if ($n < 0) { $n = -$n; } if ($a < 0) { $a = $n - (-$a % $n); } $t = 0; $nt = 1; $r = $n; $nr = $a % $n; while ($nr != 0) { $quot = intval($r/$nr); $tmp = $nt; $nt = $t - $quot*$nt; $t = $tmp; $tmp = $nr; $nr = $r - $quot*$nr; $r = $tmp; } if ($r > 1) { return -1; } if ($t < 0) { $t += $n; } return $t; } }