mirror of
https://github.com/Karaka-Management/phpOMS.git
synced 2026-01-10 17:28:40 +00:00
988 lines
29 KiB
PHP
Executable File
988 lines
29 KiB
PHP
Executable File
<?php
|
|
/**
|
|
* Karaka
|
|
*
|
|
* PHP Version 8.1
|
|
*
|
|
* @package phpOMS\Math\Matrix
|
|
* @copyright Dennis Eichhorn
|
|
* @copyright JAMA - https://math.nist.gov/javanumerics/jama/
|
|
* @license OMS License 1.0
|
|
* @version 1.0.0
|
|
* @link https://karaka.app
|
|
*/
|
|
declare(strict_types=1);
|
|
|
|
namespace phpOMS\Math\Matrix;
|
|
|
|
use phpOMS\Math\Geometry\Shape\D2\Triangle;
|
|
|
|
/**
|
|
* Eigenvalue decomposition
|
|
*
|
|
* A symmetric then A = V*D*V'
|
|
* A not symmetric then (potentially) A = V*D*inverse(V)
|
|
*
|
|
* @package phpOMS\Math\Matrix
|
|
* @license OMS License 1.0
|
|
* @link https://karaka.app
|
|
* @since 1.0.0
|
|
*/
|
|
final class EigenvalueDecomposition
|
|
{
|
|
/**
|
|
* Epsilon for float comparison.
|
|
*
|
|
* @var float
|
|
* @since 1.0.0
|
|
*/
|
|
public const EPSILON = 4.88e-04;
|
|
|
|
/**
|
|
* Dimension m
|
|
*
|
|
* @var int
|
|
* @since 1.0.0
|
|
*/
|
|
private int $m = 0;
|
|
|
|
/**
|
|
* Is symmetric
|
|
*
|
|
* @var bool
|
|
* @since 1.0.0
|
|
*/
|
|
private bool $isSymmetric = true;
|
|
|
|
/**
|
|
* A square matrix.
|
|
*
|
|
* @var array
|
|
* @since 1.0.0
|
|
*/
|
|
private array $A = [];
|
|
|
|
/**
|
|
* Eigenvectors
|
|
*
|
|
* @var array
|
|
* @since 1.0.0
|
|
*/
|
|
private array $V = [];
|
|
|
|
/**
|
|
* Eigenvalues
|
|
*
|
|
* @var array
|
|
* @since 1.0.0
|
|
*/
|
|
private array $D = [];
|
|
|
|
/**
|
|
* Eigenvalues
|
|
*
|
|
* @var array
|
|
* @since 1.0.0
|
|
*/
|
|
private array $E = [];
|
|
|
|
/**
|
|
* Hessenberg form
|
|
*
|
|
* @var array
|
|
* @since 1.0.0
|
|
*/
|
|
private array $H = [];
|
|
|
|
/**
|
|
* Non-symmetric storage
|
|
*
|
|
* @var array
|
|
* @since 1.0.0
|
|
*/
|
|
private array $ort = [];
|
|
|
|
/**
|
|
* Complex scalar division
|
|
*
|
|
* @var float
|
|
* @since 1.0.0
|
|
*/
|
|
private float $cdivr = 0.0;
|
|
|
|
/**
|
|
* Complex scalar division
|
|
*
|
|
* @var float
|
|
* @since 1.0.0
|
|
*/
|
|
private float $cdivi = 0.0;
|
|
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* @param Matrix $M Matrix
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public function __construct(Matrix $M)
|
|
{
|
|
$this->m = $M->getM();
|
|
$this->A = $M->toArray();
|
|
|
|
for ($j = 0; ($j < $this->m) & $this->isSymmetric; ++$j) {
|
|
for ($i = 0; ($i < $this->m) & $this->isSymmetric; ++$i) {
|
|
$this->isSymmetric = ($this->A[$i][$j] === $this->A[$j][$i]);
|
|
}
|
|
}
|
|
|
|
if ($this->isSymmetric) {
|
|
$this->V = $this->A;
|
|
|
|
$this->tred2();
|
|
$this->tql2();
|
|
} else {
|
|
$this->H = $this->A;
|
|
|
|
$this->orthes();
|
|
$this->hqr2();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Housholder tridiagonal form reduction.
|
|
*
|
|
* @return void
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function tred2() : void
|
|
{
|
|
for ($j = 0; $j < $this->m; ++$j) {
|
|
$this->D[$j] = $this->V[$this->m - 1][$j];
|
|
}
|
|
|
|
for ($i = $this->m - 1; $i > 0; --$i) {
|
|
$scale = 0.0;
|
|
$h = 0.0;
|
|
|
|
for ($k = 0; $k < $i; ++$k) {
|
|
$scale += \abs($this->D[$k]);
|
|
}
|
|
|
|
if ($scale == 0) {
|
|
$this->E[$i] = $this->D[$i - 1];
|
|
|
|
/* @phpstan-ignore-next-line */
|
|
for ($j = 0; $j > $i; ++$j) {
|
|
$this->D[$j] = $this->V[$i - 1][$j];
|
|
$this->V[$i][$j] = 0.0;
|
|
$this->V[$j][$i] = 0.0;
|
|
}
|
|
} else {
|
|
for ($k = 0; $k < $i; ++$k) {
|
|
$this->D[$k] /= $scale;
|
|
$h += $this->D[$k] * $this->D[$k];
|
|
}
|
|
|
|
$f = $this->D[$i - 1];
|
|
$g = $f > 0 ? -\sqrt($h) : \sqrt($h);
|
|
|
|
$this->E[$i] = $scale * $g;
|
|
$h -= $f * $g;
|
|
$this->D[$i - 1] = $f - $g;
|
|
|
|
for ($j = 0; $j < $i; ++$j) {
|
|
$this->E[$j] = 0.0;
|
|
}
|
|
|
|
for ($j = 0; $j < $i; ++$j) {
|
|
$f = $this->D[$j];
|
|
$this->V[$j][$i] = $f;
|
|
$g = $this->E[$j] + $this->V[$j][$j] * $f;
|
|
|
|
for ($k = $j + 1; $k < $i; ++$k) {
|
|
$g += $this->V[$k][$j] * $this->D[$k];
|
|
$this->E[$k] += $this->V[$k][$j] * $f;
|
|
}
|
|
|
|
$this->E[$j] = $g;
|
|
}
|
|
|
|
$f = 0.0;
|
|
for ($j = 0; $j < $i; ++$j) {
|
|
$this->E[$j] /= $h;
|
|
$f += $this->E[$j] * $this->D[$j];
|
|
}
|
|
|
|
$hh = $f / ($h + $h);
|
|
for ($j = 0; $j < $i; ++$j) {
|
|
$this->E[$j] -= $hh * $this->D[$j];
|
|
}
|
|
|
|
for ($j = 0; $j < $i; ++$j) {
|
|
$f = $this->D[$j];
|
|
$g = $this->E[$j];
|
|
|
|
for ($k = $j; $k < $i; ++$k) {
|
|
$this->V[$k][$j] -= ($f * $this->E[$k] + $g * $this->D[$k]);
|
|
}
|
|
|
|
$this->D[$j] = $this->V[$i - 1][$j];
|
|
$this->V[$i][$j] = 0.0;
|
|
}
|
|
}
|
|
|
|
$this->D[$i] = $h;
|
|
}
|
|
|
|
for ($i = 0; $i < $this->m - 1; ++$i) {
|
|
$this->V[$this->m - 1][$i] = $this->V[$i][$i];
|
|
$this->V[$i][$i] = 1.0;
|
|
$h = $this->D[$i + 1];
|
|
|
|
if ($h != 0) {
|
|
for ($k = 0; $k <= $i; ++$k) {
|
|
$this->D[$k] = $this->V[$k][$i + 1] / $h;
|
|
}
|
|
|
|
for ($j = 0; $j <= $i; ++$j) {
|
|
$g = 0.0;
|
|
for ($k = 0; $k <= $i; ++$k) {
|
|
$g += $this->V[$k][$i + 1] * $this->V[$k][$j];
|
|
}
|
|
|
|
for ($k = 0; $k <= $i; ++$k) {
|
|
$this->V[$k][$j] -= $g * $this->D[$k];
|
|
}
|
|
}
|
|
}
|
|
|
|
for ($k = 0; $k <= $i; ++$k) {
|
|
$this->V[$k][$i + 1] = 0.0;
|
|
}
|
|
}
|
|
|
|
for ($j = 0; $j < $this->m; ++$j) {
|
|
$this->D[$j] = $this->V[$this->m - 1][$j];
|
|
$this->V[$this->m - 1][$j] = 0.0;
|
|
}
|
|
|
|
$this->V[$this->m - 1][$this->m - 1] = 1.0;
|
|
$this->E[0] = 0.0;
|
|
}
|
|
|
|
/**
|
|
* Symmetric tridiagonal QL algorithm
|
|
*
|
|
* @return void
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function tql2() : void
|
|
{
|
|
for ($i = 1; $i < $this->m; ++$i) {
|
|
$this->E[$i - 1] = $this->E[$i];
|
|
}
|
|
|
|
$this->E[$this->m - 1] = 0.0;
|
|
|
|
$f = 0.0;
|
|
$tst1 = 0.0;
|
|
|
|
for ($l = 0; $l < $this->m; ++$l) {
|
|
$tst1 = \max($tst1, \abs($this->D[$l]) + \abs($this->E[$l]));
|
|
$m = $l;
|
|
|
|
while ($m < $this->m) {
|
|
if (\abs($this->E[$m]) <= self::EPSILON * $tst1) {
|
|
break;
|
|
}
|
|
|
|
++$m;
|
|
}
|
|
|
|
if ($m > $l) {
|
|
$iter = 0;
|
|
|
|
do {
|
|
++$iter;
|
|
|
|
$g = $this->D[$l];
|
|
$p = ($this->D[$l + 1] - $g) / (2.0 * $this->E[$l]);
|
|
$r = $p < 0 ? -Triangle::getHypot($p, 1) : Triangle::getHypot($p, 1);
|
|
|
|
$this->D[$l] = $this->E[$l] / ($p + $r);
|
|
$this->D[$l + 1] = $this->E[$l] * ($p + $r);
|
|
$dl1 = $this->D[$l + 1];
|
|
$h = $g - $this->D[$l];
|
|
|
|
for ($i = $l + 2; $i < $this->m; ++$i) {
|
|
$this->D[$i] -= $h;
|
|
}
|
|
|
|
$f += $h;
|
|
$p = $this->D[$m];
|
|
$c = 1.0;
|
|
$c2 = 1.0;
|
|
$c3 = 1.0;
|
|
$el1 = $this->E[$l + 1];
|
|
$s = 0.0;
|
|
$s2 = 0.0;
|
|
|
|
for ($i = $m - 1; $i >= $l; --$i) {
|
|
$c3 = $c2;
|
|
$c2 = $c;
|
|
$s2 = $s;
|
|
$g = $c * $this->E[$i];
|
|
$h = $c * $p;
|
|
$r = Triangle::getHypot($p, $this->E[$i]);
|
|
$this->E[$i + 1] = $s * $r;
|
|
$s = $this->E[$i] / $r;
|
|
$c = $p / $r;
|
|
$p = $c * $this->D[$i] - $s * $g;
|
|
$this->D[$i + 1] = $h + $s * ($c * $g + $s * $this->D[$i]);
|
|
|
|
for ($k = 0; $k < $this->m; ++$k) {
|
|
$h = $this->V[$k][$i + 1];
|
|
$this->V[$k][$i + 1] = $s * $this->V[$k][$i] + $c * $h;
|
|
$this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h;
|
|
}
|
|
}
|
|
|
|
$p = -$s * $s2 * $c3 * $el1 * $this->E[$l] / $dl1;
|
|
$this->E[$l] = $s * $p;
|
|
$this->D[$l] = $c * $p;
|
|
} while (\abs($this->E[$l]) > self::EPSILON * $tst1);
|
|
}
|
|
|
|
$this->D[$l] += $f;
|
|
$this->E[$l] = 0.0;
|
|
}
|
|
|
|
for ($i = 0; $i < $this->m - 1; ++$i) {
|
|
$k = $i;
|
|
$p = $this->D[$i];
|
|
|
|
for ($j = $i + 1; $j < $this->m; ++$j) {
|
|
if ($this->D[$j] < $p) {
|
|
$k = $j;
|
|
$p = $this->D[$j];
|
|
}
|
|
}
|
|
|
|
if ($k !== $i) {
|
|
$this->D[$k] = $this->D[$i];
|
|
$this->D[$i] = $p;
|
|
|
|
for ($j = 0; $j < $this->m; ++$j) {
|
|
$p = $this->V[$j][$i];
|
|
$this->V[$j][$i] = $this->V[$j][$k];
|
|
$this->V[$j][$k] = $p;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Create the orthogonal eigenvectors
|
|
*
|
|
* @return void
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function orthes() : void
|
|
{
|
|
$low = 0;
|
|
$high = $this->m - 1;
|
|
|
|
for ($m = $low + 1; $m < $high; ++$m) {
|
|
$scale = 0.0;
|
|
|
|
for ($i = $m; $i <= $high; ++$i) {
|
|
$scale += \abs($this->H[$i][$m - 1]);
|
|
}
|
|
|
|
if ($scale != 0) {
|
|
$h = 0.0;
|
|
for ($i = $high; $i >= $m; --$i) {
|
|
$this->ort[$i] = $this->H[$i][$m - 1] / $scale;
|
|
$h += $this->ort[$i] * $this->ort[$i];
|
|
}
|
|
|
|
$g = $this->ort[$m] > 0 ? -\sqrt($h) : \sqrt($h);
|
|
$h -= $this->ort[$m] * $g;
|
|
$this->ort[$m] -= $g;
|
|
|
|
for ($j = $m; $j < $this->m; ++$j) {
|
|
$f = 0.0;
|
|
for ($i = $high; $i >= $m; --$i) {
|
|
$f += $this->ort[$i] * $this->H[$i][$j];
|
|
}
|
|
|
|
$f /= $h;
|
|
for ($i = $m; $i <= $high; ++$i) {
|
|
$this->H[$i][$j] -= $f * $this->ort[$i];
|
|
}
|
|
}
|
|
|
|
for ($i = 0; $i <= $high; ++$i) {
|
|
$f = 0.0;
|
|
for ($j = $high; $j >= $m; --$j) {
|
|
$f += $this->ort[$j] * $this->H[$i][$j];
|
|
}
|
|
|
|
$f /= $h;
|
|
for ($j = $m; $j <= $high; ++$j) {
|
|
$this->H[$i][$j] -= $f * $this->ort[$j];
|
|
}
|
|
}
|
|
|
|
$this->ort[$m] *= $scale;
|
|
$this->H[$m][$m - 1] = $scale * $g;
|
|
}
|
|
}
|
|
|
|
for ($i = 0; $i < $this->m; ++$i) {
|
|
for ($j = 0; $j < $this->m; ++$j) {
|
|
$this->V[$i][$j] = $i === $j ? 1.0 : 0.0;
|
|
}
|
|
}
|
|
|
|
for ($m = $high - 1; $m > $low; --$m) {
|
|
if ($this->H[$m][$m - 1] != 0) {
|
|
for ($i = $m + 1; $i <= $high; ++$i) {
|
|
$this->ort[$i] = $this->H[$i][$m - 1];
|
|
}
|
|
|
|
for ($j = $m; $j <= $high; ++$j) {
|
|
$g = 0.0;
|
|
for ($i = $m; $i <= $high; ++$i) {
|
|
$g += $this->ort[$i] * $this->V[$i][$j];
|
|
}
|
|
|
|
$g = ($g / $this->ort[$m]) / $this->H[$m][$m - 1];
|
|
for ($i = $m; $i <= $high; ++$i) {
|
|
$this->V[$i][$j] += $g * $this->ort[$i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Perform complex division
|
|
*
|
|
* @param float $xr Real value
|
|
* @param float $xi Imaginary value
|
|
* @param float $yr Real value
|
|
* @param float $yi Imaginary value
|
|
*
|
|
* @return void
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function cdiv(float $xr, float $xi, float $yr, float $yi) : void
|
|
{
|
|
$r = 0.0;
|
|
$d = 0.0;
|
|
|
|
if (\abs($yr) > \abs($yi)) {
|
|
$r = $yi / $yr;
|
|
$d = $yr + $r * $yi;
|
|
|
|
$this->cdivr = ($xr + $r * $xi) / $d;
|
|
$this->cdivi = ($xi - $r * $xr) / $d;
|
|
} else {
|
|
$r = $yr / $yi;
|
|
$d = $yi + $r * $yr;
|
|
|
|
$this->cdivr = ($r * $xr + $xi) / $d;
|
|
$this->cdivi = ($r * $xi - $xr) / $d;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* QR algorithm
|
|
*
|
|
* @return void
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function hqr2() : void
|
|
{
|
|
$nn = $this->m;
|
|
$n = $nn - 1;
|
|
$low = 0;
|
|
$high = $nn - 1;
|
|
$exshift = 0.0;
|
|
$p = 0;
|
|
$q = 0;
|
|
$r = 0;
|
|
$s = 0;
|
|
$z = 0;
|
|
$norm = 0.0;
|
|
|
|
for ($i = 0; $i < $nn; ++$i) {
|
|
/* @phpstan-ignore-next-line */
|
|
if ($i < $low || $i > $high) {
|
|
$this->D[$i] = $this->H[$i][$i];
|
|
$this->E[$i] = 0.0;
|
|
}
|
|
|
|
for ($j = \max($i - 1, 0); $j < $nn; ++$j) {
|
|
$norm += \abs($this->H[$i][$j]);
|
|
}
|
|
}
|
|
|
|
$iter = 0;
|
|
while ($n >= $low) {
|
|
$l = $n;
|
|
while ($l > $low) {
|
|
$s = \abs($this->H[$l - 1][$l - 1]) + \abs($this->H[$l][$l]);
|
|
if ($s == 0) {
|
|
$s = $norm;
|
|
}
|
|
|
|
if (\abs($this->H[$l][$l - 1]) < self::EPSILON * $s) {
|
|
break;
|
|
}
|
|
|
|
--$l;
|
|
}
|
|
|
|
if ($l === $n) {
|
|
$this->H[$n][$n] = $this->H[$n][$n] + $exshift;
|
|
$this->D[$n] = $this->H[$n][$n];
|
|
$this->E[$n] = 0.0;
|
|
$iter = 0;
|
|
|
|
--$n;
|
|
} elseif ($l === $n - 1) {
|
|
$w = $this->H[$n][$n - 1] * $this->H[$n - 1][$n];
|
|
$p = ($this->H[$n - 1][$n - 1] - $this->H[$n][$n]) / 2.0;
|
|
$q = $p * $p + $w;
|
|
$z = \sqrt(\abs($q));
|
|
|
|
$this->H[$n][$n] += $exshift;
|
|
$this->H[$n - 1][$n - 1] += $exshift;
|
|
|
|
$x = $this->H[$n][$n];
|
|
|
|
if ($q >= 0) {
|
|
$z = $p >= 0 ? $p + $z : $p - $z;
|
|
$this->D[$n - 1] = $x + $z;
|
|
$this->D[$n] = $z != 0 ? $x - $w / $z : $this->D[$n - 1];
|
|
$this->E[$n - 1] = 0.0;
|
|
$this->E[$n] = 0.0;
|
|
|
|
$x = $this->H[$n][$n - 1];
|
|
$s = \abs($x) + \abs($z);
|
|
$p = $x / $s;
|
|
$q = $z / $s;
|
|
$r = \sqrt($p * $p + $q * $q);
|
|
$p /= $r;
|
|
$q /= $r;
|
|
|
|
for ($j = $n - 1; $j < $nn; ++$j) {
|
|
$z = $this->H[$n - 1][$j];
|
|
$this->H[$n - 1][$j] = $q * $z + $p * $this->H[$n][$j];
|
|
$this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z;
|
|
}
|
|
|
|
for ($i = 0; $i <= $n; ++$i) {
|
|
$z = $this->H[$i][$n - 1];
|
|
$this->H[$i][$n - 1] = $q * $z + $p * $this->H[$i][$n];
|
|
$this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z;
|
|
}
|
|
|
|
for ($i = $low; $i <= $high; ++$i) {
|
|
$z = $this->V[$i][$n - 1];
|
|
$this->V[$i][$n - 1] = $q * $z + $p * $this->V[$i][$n];
|
|
$this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z;
|
|
}
|
|
} else {
|
|
$this->D[$n - 1] = $x + $p;
|
|
$this->D[$n] = $x + $p;
|
|
$this->E[$n - 1] = $z;
|
|
$this->E[$n] = -$z;
|
|
}
|
|
|
|
$n -= 2;
|
|
$iter = 0;
|
|
} else {
|
|
$x = $this->H[$n][$n];
|
|
$y = 0.0;
|
|
$w = 0.0;
|
|
|
|
if ($l < $n) {
|
|
$y = $this->H[$n - 1][$n - 1];
|
|
$w = $this->H[$n][$n - 1] * $this->H[$n - 1][$n];
|
|
}
|
|
|
|
if ($iter === 10) {
|
|
$exshift += $x;
|
|
for ($i = $low; $i <= $n; ++$i) {
|
|
$this->H[$i][$i] -= $x;
|
|
}
|
|
|
|
$s = \abs($this->H[$n][$n - 1]) + \abs($this->H[$n - 1][$n - 2]);
|
|
$x = 0.75 * $s;
|
|
$y = $x;
|
|
$w = -0.4375 * $s * $s;
|
|
}
|
|
|
|
if ($iter === 30) {
|
|
$s = ($y - $x) / 2.0;
|
|
$s = $s * $s + $w;
|
|
|
|
if ($s > 0) {
|
|
$s = $y < $x ? -\sqrt($s) : \sqrt($s);
|
|
$s = $x - $w / (($y - $x) / 2.0 + $s);
|
|
|
|
for ($i = $low; $i <= $n; ++$i) {
|
|
$this->H[$i][$i] -= $s;
|
|
}
|
|
|
|
$exshift += $s;
|
|
$x = $y = $w = 0.964;
|
|
}
|
|
}
|
|
|
|
++$iter;
|
|
$m = $n - 2;
|
|
|
|
while ($m >= $l) {
|
|
$z = $this->H[$m][$m];
|
|
$r = $x - $z;
|
|
$s = $y - $z;
|
|
$p = ($r * $s - $w) / $this->H[$m + 1][$m] + $this->H[$m][$m + 1];
|
|
$q = $this->H[$m + 1][$m + 1] - $z - $r - $s;
|
|
$r = $this->H[$m + 2][$m + 1];
|
|
$s = \abs($p) + \abs($q) + \abs($r);
|
|
$p /= $s;
|
|
$q /= $s;
|
|
$r /= $s;
|
|
|
|
if ($m === $l
|
|
|| \abs($this->H[$m][$m - 1]) * (\abs($q) + \abs($r)) < self::EPSILON * (\abs($p) * (\abs($this->H[$m - 1][$m - 1]) + \abs($z) + \abs($this->H[$m + 1][$m + 1])))
|
|
) {
|
|
break;
|
|
}
|
|
|
|
--$m;
|
|
}
|
|
|
|
for ($i = $m + 2; $i <= $n; ++$i) {
|
|
$this->H[$i][$i - 2] = 0.0;
|
|
|
|
if ($i > $m + 2) {
|
|
$this->H[$i][$i - 3] = 0.0;
|
|
}
|
|
}
|
|
|
|
for ($k = $m; $k < $n; ++$k) {
|
|
$notlast = ($k !== $n - 1);
|
|
|
|
if ($k !== $m) {
|
|
$p = $this->H[$k][$k - 1];
|
|
$q = $this->H[$k + 1][$k - 1];
|
|
$r = ($notlast ? $this->H[$k + 2][$k - 1] : 0.0);
|
|
$x = \abs($p) + \abs($q) + \abs($r);
|
|
|
|
if ($x == 0) {
|
|
continue;
|
|
}
|
|
|
|
$p /= $x;
|
|
$q /= $x;
|
|
$r /= $x;
|
|
}
|
|
|
|
$s = $p < 0 ? -\sqrt($p * $p + $q * $q + $r * $r) : \sqrt($p * $p + $q * $q + $r * $r);
|
|
|
|
if ($s == 0) {
|
|
continue;
|
|
}
|
|
|
|
if ($k !== $m) {
|
|
$this->H[$k][$k - 1] = -$s * $x;
|
|
} elseif ($l !== $m) {
|
|
$this->H[$k][$k - 1] = -$this->H[$k][$k - 1];
|
|
}
|
|
|
|
$p += $s;
|
|
$x = $p / $s;
|
|
$y = $q / $s;
|
|
$z = $r / $s;
|
|
$q /= $p;
|
|
$r /= $p;
|
|
|
|
for ($j = $k; $j < $nn; ++$j) {
|
|
$p = $this->H[$k][$j] + $q * $this->H[$k + 1][$j];
|
|
if ($notlast) {
|
|
$p = $p + $r * $this->H[$k + 2][$j];
|
|
$this->H[$k + 2][$j] = $this->H[$k + 2][$j] - $p * $z;
|
|
}
|
|
|
|
$this->H[$k][$j] = $this->H[$k][$j] - $p * $x;
|
|
$this->H[$k + 1][$j] = $this->H[$k + 1][$j] - $p * $y;
|
|
}
|
|
|
|
$min = \min($n, $k + 3);
|
|
for ($i = 0; $i <= $min; ++$i) {
|
|
$p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k + 1];
|
|
|
|
if ($notlast) {
|
|
$p = $p + $z * $this->H[$i][$k + 2];
|
|
$this->H[$i][$k + 2] = $this->H[$i][$k + 2] - $p * $r;
|
|
}
|
|
|
|
$this->H[$i][$k] = $this->H[$i][$k] - $p;
|
|
$this->H[$i][$k + 1] = $this->H[$i][$k + 1] - $p * $q;
|
|
}
|
|
|
|
for ($i = $low; $i <= $high; ++$i) {
|
|
$p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k + 1];
|
|
|
|
if ($notlast) {
|
|
$p += $z * $this->V[$i][$k + 2];
|
|
$this->V[$i][$k + 2] = $this->V[$i][$k + 2] - $p * $r;
|
|
}
|
|
$this->V[$i][$k] = $this->V[$i][$k] - $p;
|
|
$this->V[$i][$k + 1] = $this->V[$i][$k + 1] - $p * $q;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ($norm == 0) {
|
|
return;
|
|
}
|
|
|
|
for ($n = $nn - 1; $n >= 0; --$n) {
|
|
$p = $this->D[$n];
|
|
$q = $this->E[$n];
|
|
|
|
if ($q == 0) {
|
|
$l = $n;
|
|
$this->H[$n][$n] = 1.0;
|
|
|
|
for ($i = $n - 1; $i >= 0; --$i) {
|
|
$w = $this->H[$i][$i] - $p;
|
|
$r = 0.0;
|
|
|
|
for ($j = $l; $j <= $n; ++$j) {
|
|
$r += $this->H[$i][$j] * $this->H[$j][$n];
|
|
}
|
|
|
|
if ($this->E[$i] < 0.0) {
|
|
$z = $w;
|
|
$s = $r;
|
|
} else {
|
|
$l = $i;
|
|
|
|
if ($this->E[$i] == 0) {
|
|
$this->H[$i][$n] = $w != 0 ? -$r / $w : -$r / (self::EPSILON * $norm);
|
|
} else {
|
|
$x = $this->H[$i][$i + 1];
|
|
$y = $this->H[$i + 1][$i];
|
|
$q = ($this->D[$i] - $p) * ($this->D[$i] - $p) + $this->E[$i] * $this->E[$i];
|
|
$t = ($x * $s - $z * $r) / $q;
|
|
$this->H[$i][$n] = $t;
|
|
$this->H[$i + 1][$n] = \abs($x) > \abs($z) ? (-$r - $w * $t) / $x : (-$s - $y * $t) / $z;
|
|
}
|
|
|
|
$t = \abs($this->H[$i][$n]);
|
|
if ((self::EPSILON * $t) * $t > 1) {
|
|
for ($j = $i; $j <= $n; ++$j) {
|
|
$this->H[$j][$n] = $this->H[$j][$n] / $t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} elseif ($q < 0) {
|
|
$l = $n - 1;
|
|
|
|
if (\abs($this->H[$n][$n - 1]) > \abs($this->H[$n - 1][$n])) {
|
|
$this->H[$n - 1][$n - 1] = $q / $this->H[$n][$n - 1];
|
|
$this->H[$n - 1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n - 1];
|
|
} else {
|
|
$this->cdiv(0.0, -$this->H[$n - 1][$n], $this->H[$n - 1][$n - 1] - $p, $q);
|
|
$this->H[$n - 1][$n - 1] = $this->cdivr;
|
|
$this->H[$n - 1][$n] = $this->cdivi;
|
|
}
|
|
|
|
$this->H[$n][$n - 1] = 0.0;
|
|
$this->H[$n][$n] = 1.0;
|
|
|
|
for ($i = $n - 2; $i >= 0; --$i) {
|
|
$ra = 0.0;
|
|
$sa = 0.0;
|
|
|
|
for ($j = $l; $j <= $n; ++$j) {
|
|
$ra = $ra + $this->H[$i][$j] * $this->H[$j][$n - 1];
|
|
$sa = $sa + $this->H[$i][$j] * $this->H[$j][$n];
|
|
}
|
|
|
|
$w = $this->H[$i][$i] - $p;
|
|
if ($this->E[$i] < 0.0) {
|
|
$z = $w;
|
|
$r = $ra;
|
|
$s = $sa;
|
|
} else {
|
|
$l = $i;
|
|
|
|
if ($this->E[$i] == 0) {
|
|
$this->cdiv(-$ra, -$sa, $w, $q);
|
|
|
|
$this->H[$i][$n - 1] = $this->cdivr;
|
|
$this->H[$i][$n] = $this->cdivi;
|
|
} else {
|
|
$x = $this->H[$i][$i + 1];
|
|
$y = $this->H[$i + 1][$i];
|
|
$vr = ($this->D[$i] - $p) * ($this->D[$i] - $p) + $this->E[$i] * $this->E[$i] - $q * $q;
|
|
$vi = ($this->D[$i] - $p) * 2.0 * $q;
|
|
|
|
if ($vr == 0 & $vi == 0) {
|
|
$vr = self::EPSILON * $norm * (\abs($w) + \abs($q) + \abs($x) + \abs($y) + \abs($z));
|
|
}
|
|
|
|
$this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi);
|
|
|
|
$this->H[$i][$n - 1] = $this->cdivr;
|
|
$this->H[$i][$n] = $this->cdivi;
|
|
|
|
if (\abs($x) > (\abs($z) + \abs($q))) {
|
|
$this->H[$i + 1][$n - 1] = (-$ra - $w * $this->H[$i][$n - 1] + $q * $this->H[$i][$n]) / $x;
|
|
$this->H[$i + 1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n - 1]) / $x;
|
|
} else {
|
|
$this->cdiv(-$r - $y * $this->H[$i][$n - 1], -$s - $y * $this->H[$i][$n], $z, $q);
|
|
$this->H[$i + 1][$n - 1] = $this->cdivr;
|
|
$this->H[$i + 1][$n] = $this->cdivi;
|
|
}
|
|
}
|
|
|
|
$t = \max(\abs($this->H[$i][$n - 1]), \abs($this->H[$i][$n]));
|
|
if ((self::EPSILON * $t) * $t > 1) {
|
|
for ($j = $i; $j <= $n; ++$j) {
|
|
$this->H[$j][$n - 1] = $this->H[$j][$n - 1] / $t;
|
|
$this->H[$j][$n] = $this->H[$j][$n] / $t;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for ($i = 0; $i < $nn; ++$i) {
|
|
/* @phpstan-ignore-next-line */
|
|
if ($i < $low || $i > $high) {
|
|
for ($j = $i; $j < $nn; ++$j) {
|
|
$this->V[$i][$j] = $this->H[$i][$j];
|
|
}
|
|
}
|
|
}
|
|
|
|
for ($j = $nn - 1; $j >= $low; --$j) {
|
|
for ($i = $low; $i <= $high; ++$i) {
|
|
$z = 0.0;
|
|
|
|
$min = \min($j, $high);
|
|
for ($k = $low; $k <= $min; ++$k) {
|
|
$z += $this->V[$i][$k] * $this->H[$k][$j];
|
|
}
|
|
|
|
$this->V[$i][$j] = $z;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Is matrix symmetric?
|
|
*
|
|
* @return bool
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public function isSymmetric() : bool
|
|
{
|
|
return $this->isSymmetric;
|
|
}
|
|
|
|
/**
|
|
* Get V matrix
|
|
*
|
|
* @return Matrix
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public function getV() : Matrix
|
|
{
|
|
$matrix = new Matrix();
|
|
$matrix->setMatrix($this->V);
|
|
|
|
return $matrix;
|
|
}
|
|
|
|
/**
|
|
* Get real eigenvalues
|
|
*
|
|
* @return Vector
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public function getRealEigenvalues() : Vector
|
|
{
|
|
$vector = new Vector();
|
|
$vector->setMatrix($this->D);
|
|
|
|
return $vector;
|
|
}
|
|
|
|
/**
|
|
* Get imaginary eigenvalues
|
|
*
|
|
* @return Vector
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public function getImagEigenvalues() : Vector
|
|
{
|
|
$vector = new Vector();
|
|
$vector->setMatrix($this->E);
|
|
|
|
return $vector;
|
|
}
|
|
|
|
/**
|
|
* Get D matrix
|
|
*
|
|
* @return Matrix
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public function getD() : Matrix
|
|
{
|
|
$matrix = new Matrix();
|
|
|
|
$D = [[]];
|
|
for ($i = 0; $i < $this->m; ++$i) {
|
|
for ($j = 0; $j < $this->m; ++$j) {
|
|
$D[$i][$j] = 0.0;
|
|
}
|
|
|
|
$D[$i][$i] = $this->D[$i];
|
|
if ($this->E[$i] > 0) {
|
|
$D[$i][$i + 1] = $this->E[$i];
|
|
} elseif ($this->E[$i] < 0) {
|
|
$D[$i][$i - 1] = $this->E[$i];
|
|
}
|
|
}
|
|
|
|
$matrix->setMatrix($D);
|
|
|
|
return $matrix;
|
|
}
|
|
}
|