mirror of
https://github.com/Karaka-Management/phpOMS.git
synced 2026-01-10 17:28:40 +00:00
370 lines
7.9 KiB
PHP
Executable File
370 lines
7.9 KiB
PHP
Executable File
<?php
|
|
/**
|
|
* Karaka
|
|
*
|
|
* PHP Version 8.1
|
|
*
|
|
* @package phpOMS\Math\Functions
|
|
* @copyright Dennis Eichhorn
|
|
* @license OMS License 1.0
|
|
* @version 1.0.0
|
|
* @link https://karaka.app
|
|
*/
|
|
declare(strict_types=1);
|
|
|
|
namespace phpOMS\Math\Functions;
|
|
|
|
/**
|
|
* Well known functions and helpers class.
|
|
*
|
|
* @package phpOMS\Math\Functions
|
|
* @license OMS License 1.0
|
|
* @link https://karaka.app
|
|
* @since 1.0.0
|
|
*/
|
|
final class Functions
|
|
{
|
|
/**
|
|
* Epsilon for float comparison.
|
|
*
|
|
* @var float
|
|
* @since 1.0.0
|
|
*/
|
|
public const EPSILON = 4.88e-04;
|
|
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* @since 1.0.0
|
|
* @codeCoverageIgnore
|
|
*/
|
|
private function __construct()
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Calculate gammar function value.
|
|
*
|
|
* Example: (7, 2)
|
|
*
|
|
* @param int $n Factorial upper bound
|
|
* @param int $start Factorial starting value
|
|
*
|
|
* @return int
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function fact(int $n, int $start = 1) : int
|
|
{
|
|
$fact = 1;
|
|
|
|
for ($i = $start; $i < $n + 1; ++$i) {
|
|
$fact *= $i;
|
|
}
|
|
|
|
return $fact;
|
|
}
|
|
|
|
/**
|
|
* Calculate binomial coefficient
|
|
*
|
|
* Algorithm optimized for large factorials without the use of big int or string manipulation.
|
|
*
|
|
* Example: (7, 2)
|
|
*
|
|
* @param int $n n
|
|
* @param int $k k
|
|
*
|
|
* @return int
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function binomialCoefficient(int $n, int $k) : int
|
|
{
|
|
$max = \max([$k, $n - $k]);
|
|
$min = \min([$k, $n - $k]);
|
|
|
|
$fact = 1;
|
|
$range = \array_reverse(\range(1, $min));
|
|
|
|
for ($i = $max + 1; $i < $n + 1; ++$i) {
|
|
$div = 1;
|
|
foreach ($range as $key => $d) {
|
|
if ($i % $d === 0) {
|
|
$div = $d;
|
|
|
|
unset($range[$key]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
$fact *= $i / $div;
|
|
}
|
|
|
|
$fact2 = 1;
|
|
|
|
foreach ($range as $d) {
|
|
$fact2 *= $d;
|
|
}
|
|
|
|
return (int) ($fact / $fact2);
|
|
}
|
|
|
|
/**
|
|
* Calculate ackermann function.
|
|
*
|
|
* @param int $m m
|
|
* @param int $n n
|
|
*
|
|
* @return int
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function ackermann(int $m, int $n) : int
|
|
{
|
|
if ($m === 0) {
|
|
return $n + 1;
|
|
} elseif ($n === 0) {
|
|
return self::ackermann($m - 1, 1);
|
|
}
|
|
|
|
return self::ackermann($m - 1, self::ackermann($m, $n - 1));
|
|
}
|
|
|
|
/**
|
|
* Calculate inverse modular.
|
|
*
|
|
* @param int $a a
|
|
* @param int $n Modulo
|
|
*
|
|
* @return int
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function invMod(int $a, int $n) : int
|
|
{
|
|
if ($n < 0) {
|
|
$n = -$n;
|
|
}
|
|
|
|
if ($a < 0) {
|
|
$a = $n - (-$a % $n);
|
|
}
|
|
|
|
$t = 0;
|
|
$nt = 1;
|
|
$r = $n;
|
|
$nr = $a % $n;
|
|
|
|
while ($nr != 0) {
|
|
$quot = (int) ($r / $nr);
|
|
$tmp = $nt;
|
|
$nt = $t - $quot * $nt;
|
|
$t = $tmp;
|
|
$tmp = $nr;
|
|
$nr = $r - $quot * $nr;
|
|
$r = $tmp;
|
|
}
|
|
|
|
if ($r > 1) {
|
|
return -1;
|
|
}
|
|
|
|
if ($t < 0) {
|
|
$t += $n;
|
|
}
|
|
|
|
return $t;
|
|
}
|
|
|
|
/**
|
|
* Modular implementation for negative values.
|
|
*
|
|
* @param int $a a
|
|
* @param int $b b
|
|
*
|
|
* @return int
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function mod(int $a, int $b) : int
|
|
{
|
|
if ($a < 0) {
|
|
return ($a + $b) % $b;
|
|
}
|
|
|
|
return $a % $b;
|
|
}
|
|
|
|
/**
|
|
* Check if value is odd.
|
|
*
|
|
* @param int $a Value to test
|
|
*
|
|
* @return bool
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function isOdd(int $a) : bool
|
|
{
|
|
return (bool) ($a & 1);
|
|
}
|
|
|
|
/**
|
|
* Check if value is even.
|
|
*
|
|
* @param int $a Value to test
|
|
*
|
|
* @return bool
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function isEven(int $a) : bool
|
|
{
|
|
return !((bool) ($a & 1));
|
|
}
|
|
|
|
/**
|
|
* Gets the relative position on a circular construct.
|
|
*
|
|
* @example The relative fiscal month (August) in a company where the fiscal year starts in July.
|
|
* @example 2 = getRelativeDegree(8, 12, 7);
|
|
*
|
|
* @param int $value Value to get degree
|
|
* @param int $length Circle size
|
|
* @param int $start Start value
|
|
*
|
|
* @return int Lowest value is 0 and highest value is length - 1
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function getRelativeDegree(int $value, int $length, int $start = 0) : int
|
|
{
|
|
return \abs(self::mod($value - $start, $length));
|
|
}
|
|
|
|
/**
|
|
* Calculate the value of the error function (gauss error function)
|
|
*
|
|
* @param float $value Value
|
|
*
|
|
* @return float
|
|
*
|
|
* @see Sylvain Chevillard; HAL Id: ensl-00356709
|
|
* @see https://hal-ens-lyon.archives-ouvertes.fr/ensl-00356709v3
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function getErf(float $value) : float
|
|
{
|
|
if (\abs($value) > 2.2) {
|
|
return 1 - self::getErfc($value);
|
|
}
|
|
|
|
$valueSquared = $value * $value;
|
|
$sum = $value;
|
|
$term = $value;
|
|
$i = 1;
|
|
|
|
do {
|
|
$term *= $valueSquared / $i;
|
|
$sum -= $term / (2 * $i + 1);
|
|
|
|
++$i;
|
|
|
|
$term *= $valueSquared / $i;
|
|
$sum += $term / (2 * $i + 1);
|
|
|
|
++$i;
|
|
} while ($sum !== 0.0 && \abs($term / $sum) > self::EPSILON);
|
|
|
|
return 2 / \sqrt(\M_PI) * $sum;
|
|
}
|
|
|
|
/**
|
|
* Calculate the value of the complementary error fanction
|
|
*
|
|
* @param float $value Value
|
|
*
|
|
* @return float
|
|
*
|
|
* @see Sylvain Chevillard; HAL Id: ensl-00356709
|
|
* @see https://hal-ens-lyon.archives-ouvertes.fr/ensl-00356709v3
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function getErfc(float $value) : float
|
|
{
|
|
if (\abs($value) <= 2.2) {
|
|
return 1 - self::getErf($value);
|
|
}
|
|
|
|
if ($value < 0.0) {
|
|
return 2 - self::getErfc(-$value);
|
|
}
|
|
|
|
$a = $n = 1;
|
|
$b = $c = $value;
|
|
$d = ($value * $value) + 0.5;
|
|
$q1 = $q2 = $b / $d;
|
|
$t = 0;
|
|
|
|
do {
|
|
$t = $a * $n + $b * $value;
|
|
$a = $b;
|
|
$b = $t;
|
|
$t = $c * $n + $d * $value;
|
|
$c = $d;
|
|
$d = $t;
|
|
$n += 0.5;
|
|
$q1 = $q2;
|
|
$q2 = $b / $d;
|
|
} while (\abs($q1 - $q2) / $q2 > self::EPSILON);
|
|
|
|
return 1 / \sqrt(\M_PI) * \exp(-$value * $value) * $q2;
|
|
}
|
|
|
|
/**
|
|
* Generalized hypergeometric function.
|
|
*
|
|
* pFq(a1, ..., ap; b1, ..., bq; z)
|
|
*
|
|
* @param array<int, float|int> $a Array of values
|
|
* @param array<int, float|int> $b Array of values
|
|
* @param float $z Z
|
|
*
|
|
* @return float
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function generalizedHypergeometricFunction(array $a, array $b, float $z) : float
|
|
{
|
|
$sum = 0.0;
|
|
$aProd = \array_fill(0, 20, []);
|
|
$bProd = \array_fill(0, 20, []);
|
|
|
|
for ($n = 0; $n < 20; ++$n) {
|
|
foreach ($a as $key => $value) {
|
|
if ($n === 0) {
|
|
$aProd[$n][$key] = 1;
|
|
} else {
|
|
$aProd[$n][$key] = $aProd[$n - 1][$key] * ($value + $n - 1);
|
|
}
|
|
}
|
|
|
|
foreach ($b as $key => $value) {
|
|
if ($n === 0) {
|
|
$bProd[$n][$key] = 1;
|
|
} else {
|
|
$bProd[$n][$key] = $bProd[$n - 1][$key] * ($value + $n - 1);
|
|
}
|
|
}
|
|
|
|
$temp = \array_product($aProd[$n]) / \array_product($bProd[$n]);
|
|
$sum += $temp * $z ** $n / self::fact($n);
|
|
}
|
|
|
|
return $sum;
|
|
}
|
|
}
|