mirror of
https://github.com/Karaka-Management/phpOMS.git
synced 2026-01-10 17:28:40 +00:00
259 lines
6.9 KiB
PHP
Executable File
259 lines
6.9 KiB
PHP
Executable File
<?php
|
|
/**
|
|
* Karaka
|
|
*
|
|
* PHP Version 8.1
|
|
*
|
|
* @package phpOMS\Ai\Ocr
|
|
* @copyright Dennis Eichhorn
|
|
* @license OMS License 1.0
|
|
* @version 1.0.0
|
|
* @link https://karaka.app
|
|
*/
|
|
declare(strict_types=1);
|
|
|
|
namespace phpOMS\Ai\Ocr;
|
|
|
|
use phpOMS\Math\Topology\MetricsND;
|
|
use phpOMS\System\File\PathException;
|
|
|
|
/**
|
|
* Basic OCR implementation for MNIST data
|
|
*
|
|
* @package phpOMS\Ai\Ocr
|
|
* @license OMS License 1.0
|
|
* @link https://karaka.app
|
|
* @since 1.0.0
|
|
*/
|
|
final class BasicOcr
|
|
{
|
|
/**
|
|
* Dataset on which the OCR is trained on.
|
|
*
|
|
* The data needs to be MNIST data.
|
|
*
|
|
* @var array
|
|
* @since 1.0.0
|
|
*/
|
|
private array $Xtrain = [];
|
|
|
|
/**
|
|
* Resultset on which the OCR is trained on.
|
|
*
|
|
* These are the actual values for the Xtrain data and must therefore have the same dimension.
|
|
*
|
|
* The labels need to be MNIST labels.
|
|
*
|
|
* @var array
|
|
* @since 1.0.0
|
|
*/
|
|
private array $ytrain = [];
|
|
|
|
/**
|
|
* Train OCR with data and result/labels
|
|
*
|
|
* @param string $dataPath Impage path to read
|
|
* @param string $labelPath Label path to read
|
|
* @param int $limit Limit (0 = unlimited)
|
|
*
|
|
* @return void
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public function trainWith(string $dataPath, string $labelPath, int $limit = 0) : void
|
|
{
|
|
$Xtrain = $this->readImages($dataPath, $limit);
|
|
$ytrain = $this->readLabels($labelPath, $limit);
|
|
|
|
$this->Xtrain = \array_merge($this->Xtrain, $Xtrain);
|
|
$this->ytrain = \array_merge($this->ytrain, $ytrain);
|
|
}
|
|
|
|
/**
|
|
* Reat image from path
|
|
*
|
|
* @param string $path Image to read
|
|
* @param int $limit Limit
|
|
*
|
|
* @return array
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function readImages(string $path, int $limit = 0) : array
|
|
{
|
|
if (!\is_file($path)) {
|
|
throw new PathException($path);
|
|
}
|
|
|
|
$fp = \fopen($path, 'r');
|
|
if ($fp === false) {
|
|
throw new PathException($path); // @codeCoverageIgnore
|
|
}
|
|
|
|
if (($read = \fread($fp, 4)) === false || ($unpack = \unpack('N', $read)) === false) {
|
|
return []; // @codeCoverageIgnore
|
|
}
|
|
$magicNumber = $unpack[1];
|
|
|
|
if (($read = \fread($fp, 4)) === false || ($unpack = \unpack('N', $read)) === false) {
|
|
return []; // @codeCoverageIgnore
|
|
}
|
|
$numberOfImages = $unpack[1];
|
|
|
|
if ($limit > 0) {
|
|
$numberOfImages = \min($numberOfImages, $limit);
|
|
}
|
|
|
|
if (($read = \fread($fp, 4)) === false || ($unpack = \unpack('N', $read)) === false) {
|
|
return []; // @codeCoverageIgnore
|
|
}
|
|
|
|
/** @var int<0, max> $numberOfRows */
|
|
$numberOfRows = (int) $unpack[1];
|
|
|
|
if (($read = \fread($fp, 4)) === false || ($unpack = \unpack('N', $read)) === false) {
|
|
return []; // @codeCoverageIgnore
|
|
}
|
|
|
|
/** @var int<0, max> $numberOfColumns */
|
|
$numberOfColumns = (int) $unpack[1];
|
|
|
|
$images = [];
|
|
for ($i = 0; $i < $numberOfImages; ++$i) {
|
|
if (($read = \fread($fp, $numberOfRows * $numberOfColumns)) === false
|
|
|| ($unpack = \unpack('C*', $read)) === false
|
|
) {
|
|
return []; // @codeCoverageIgnore
|
|
}
|
|
$images[] = \array_values($unpack);
|
|
}
|
|
|
|
\fclose($fp);
|
|
|
|
return $images;
|
|
}
|
|
|
|
/**
|
|
* Read labels from from path
|
|
*
|
|
* @param string $path Labels path
|
|
* @param int $limit Limit
|
|
*
|
|
* @return array
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function readLabels(string $path, int $limit = 0) : array
|
|
{
|
|
if (!\is_file($path)) {
|
|
throw new PathException($path);
|
|
}
|
|
|
|
$fp = \fopen($path, 'r');
|
|
if ($fp === false) {
|
|
throw new PathException($path); // @codeCoverageIgnore
|
|
}
|
|
|
|
if (($read = \fread($fp, 4)) === false || ($unpack = \unpack('N', $read)) === false) {
|
|
return []; // @codeCoverageIgnore
|
|
}
|
|
$magicNumber = $unpack[1];
|
|
|
|
if (($read = \fread($fp, 4)) === false || ($unpack = \unpack('N', $read)) === false) {
|
|
return []; // @codeCoverageIgnore
|
|
}
|
|
$numberOfLabels = $unpack[1];
|
|
|
|
if ($limit > 0) {
|
|
$numberOfLabels = \min($numberOfLabels, $limit);
|
|
}
|
|
|
|
$labels = [];
|
|
for ($i = 0; $i < $numberOfLabels; ++$i) {
|
|
if (($read = \fread($fp, 1)) === false || ($unpack = \unpack('C', $read)) === false) {
|
|
return []; // @codeCoverageIgnore
|
|
}
|
|
$labels[] = $unpack[1];
|
|
}
|
|
|
|
\fclose($fp);
|
|
|
|
return $labels;
|
|
}
|
|
|
|
/**
|
|
* Find the k-nearest matches for test data
|
|
*
|
|
* @param array $Xtrain Image data used for training
|
|
* @param array $ytrain Labels associated with the trained data
|
|
* @param array $Xtest Image data from the image to categorize
|
|
* @param int $k Amount of best fits that should be found
|
|
*/
|
|
private function kNearest(array $Xtrain, array $ytrain, array $Xtest, int $k = 3) : array
|
|
{
|
|
$predictedLabels = [];
|
|
foreach ($Xtest as $sample) {
|
|
$distances = $this->getDistances($Xtrain, $sample);
|
|
\asort($distances);
|
|
|
|
$keys = \array_keys($distances);
|
|
|
|
$candidateLabels = [];
|
|
for ($i = 0; $i < $k; ++$i) {
|
|
$candidateLabels[] = $ytrain[$keys[$i]];
|
|
}
|
|
|
|
// find best match
|
|
$countedCandidates = \array_count_values($candidateLabels);
|
|
|
|
foreach ($candidateLabels as $i => $label) {
|
|
$predictedLabels[] = [
|
|
'label' => $label,
|
|
'prob' => $countedCandidates[$label] / $k,
|
|
];
|
|
}
|
|
}
|
|
|
|
return $predictedLabels;
|
|
}
|
|
|
|
/**
|
|
* Fitting method in order to see how similar two datasets are.
|
|
*
|
|
* @param array $Xtrain Image data used for training
|
|
* @param array $sample Image data to compare against
|
|
*
|
|
* @return array
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function getDistances(array $Xtrain, array $sample) : array
|
|
{
|
|
$dist = [];
|
|
foreach ($Xtrain as $train) {
|
|
$dist[] = MetricsND::euclidean($train, $sample);
|
|
}
|
|
|
|
return $dist;
|
|
}
|
|
|
|
/**
|
|
* Categorize an unknown image
|
|
*
|
|
* @param string $path Path to the image to categorize/evaluate/match against the training data
|
|
* @param int $comparison Amount of comparisons
|
|
* @param int $limit Limit (0 = unlimited)
|
|
*
|
|
* @return array
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public function matchImage(string $path, int $comparison = 3, int $limit = 0) : array
|
|
{
|
|
// @todo: implement image reading if it isn't an mnist file
|
|
$Xtest = $this->readImages($path, $limit);
|
|
|
|
return $this->kNearest($this->Xtrain, $this->ytrain, $Xtest, $comparison);
|
|
}
|
|
}
|