phpOMS/Math/Stochastic/Distribution/ZTesting.php
2020-09-27 16:49:19 +02:00

102 lines
2.5 KiB
PHP

<?php
/**
* Orange Management
*
* PHP Version 7.4
*
* @package phpOMS\Math\Stochastic\Distribution
* @copyright Dennis Eichhorn
* @license OMS License 1.0
* @version 1.0.0
* @link https://orange-management.org
*/
declare(strict_types=1);
namespace phpOMS\Math\Stochastic\Distribution;
use phpOMS\Math\Statistic\Average;
use phpOMS\Math\Statistic\MeasureOfDispersion;
/**
* ZTest
*
* @package phpOMS\Math\Stochastic\Distribution
* @license OMS License 1.0
* @link https://orange-management.org
* @since 1.0.0
*
* @internal
*/
final class ZTesting
{
public const TABLE = [
'2.58' => 0.99,
'2.33' => 0.98,
'1.96' => 0.95,
'1.64' => 0.90,
'1.44' => 0.85,
'1.28' => 0.80,
];
/**
* Test hypthesis.
*
* @param float $dataset Value observed
* @param float $expected Expected value
* @param float $total Observed dataset size
* @param float $significance Significance
*
* @return bool
*
* @since 1.0.0
*/
public static function testHypothesis(float $dataset, float $expected, float $total, float $significance = 0.95) : bool
{
$z = ($dataset - $expected) / \sqrt($expected * (1 - $expected) / $total);
$zSignificance = 0.0;
foreach (self::TABLE as $key => $value) {
if ($significance === $value) {
$zSignificance = (float) $key;
}
}
return $z > -$zSignificance && $z < $zSignificance;
}
/**
* Z-TEST.
*
* @param float $value Value to test
* @param array $data Data
* @param null|float $sigma Sigma / Significance
*
* @return float
*
* @since 1.0.0
*/
public static function zTest(float $value, array $data, float $sigma = null) : float
{
$sigma ??= MeasureOfDispersion::standardDeviationSample($data);
return 1 - NormalDistribution::getCdf((Average::arithmeticMean($data) - $value) / ($sigma / \sqrt(\count($data))), 0.0, 1.0);
}
/**
* Z-TEST.
*
* @param float $value Value to test
* @param float $mean Mean
* @param int $dataSize Data size
* @param float $sigma Sigma / Significance
*
* @return float
*
* @since 1.0.0
*/
public static function zTestValues(float $value, float $mean, int $dataSize, float $sigma) : float
{
return 1 - NormalDistribution::getCdf(($mean - $value) / ($sigma / \sqrt($dataSize)), 0.0, 1.0);
}
}