phpOMS/Ai/Ocr/BasicOcr.php
2020-07-31 18:13:59 +02:00

251 lines
6.2 KiB
PHP

<?php
/**
* Orange Management
*
* PHP Version 7.4
*
* @package phpOMS\Ai\Ocr
* @copyright Dennis Eichhorn
* @license OMS License 1.0
* @version 1.0.0
* @link https://orange-management.org
*/
declare(strict_types=1);
namespace phpOMS\Ai\Ocr;
use phpOMS\Math\Topology\MetricsND;
/**
* Basic OCR implementation for MNIST data
*
* @package phpOMS\Ai\Ocr
* @license OMS License 1.0
* @link https://orange-management.org
* @since 1.0.0
*/
final class BasicOcr
{
/**
* Dataset on which the OCR is trained on.
*
* The data needs to be MNIST data.
*
* @var array
* @since 1.0.0
*/
private array $Xtrain = [];
/**
* Resultset on which the OCR is trained on.
*
* These are the actual values for the Xtrain data and must therefore have the same dimension.
*
* The labels need to be MNIST labels.
*
* @var array
* @since 1.0.0
*/
private array $ytrain = [];
/**
* Train OCR with data and result/labels
*
* @param string $dataPath Impage path to read
* @param string $labelPath Label path to read
*
* @return void
*
* @since 1.0.0
*/
public function trainWith(string $dataPath, string $labelPath) : void
{
$Xtrain = $this->readImages($dataPath);
$ytrain = $this->readLabels($labelPath);
$this->Xtrain = \array_merge($this->Xtrain, $this->extractFeatures($Xtrain));
$this->ytrain = \array_merge($this->ytrain, $this->extractFeatures($ytrain));
}
/**
* Reat image from path
*
* @param string $path Image to read
*
* @return array
*
* @since 1.0.0
*/
private function readImages(string $path) : array
{
$fp = \fopen($path, 'r');
if ($fp === false) {
throw new \Exception();
}
$magicNumber = \unpack('l', \fread($fp, 4))[1];
$numberOfImages = \unpack('l', \fread($fp, 4))[1];
$numberOfRows = \unpack('l', \fread($fp, 4))[1];
$numberOfColumns = \unpack('l', \fread($fp, 4))[1];
$images = [];
for ($i = 0; $i < $numberOfImages; ++$i) {
$image = [];
for ($row = 0; $row < $numberOfRows; ++$row) {
$rows = [];
for ($col = 0; $col < $numberOfColumns; ++$col) {
$rows[] = \unpack('l', \fread($fp, 1))[1]; //fread($fp, 1);
}
$image[] = $rows;
}
$images[] = $image;
}
return $images;
}
/**
* Read labels from from path
*
* @param string $path Labels path
*
* @return array
*
* @since 1.0.0
*/
private function readLabels(string $path) : array
{
$fp = \fopen($path, 'r');
if ($fp === false) {
throw new \Exception();
}
$magicNumber = \unpack('l', \fread($fp, 4))[1];
$numberOfLabels = \unpack('l', \fread($fp, 4))[1];
$labels = [];
for ($i = 0; $i < $numberOfLabels; ++$i) {
$labels[] = \unpack('l', \fread($fp, 1))[1]; //fread($fp, 1);
}
return $labels;
}
/**
* Extract data and labe information from image data
*
* @param array $data Image data and label information from the images
*
* @return array
*
* @since 1.0.0
*/
private function extractFeatures(array $data) : array
{
$features = [];
foreach ($data as $sample) {
$features[] = $this->flatten($sample);
}
return $features;
}
/**
* Reduce the dimension of the data and label information
*
* @param array $data Image data and labell information to flatten
*
* @return arry
*
* @sicne 1.0.0
*/
private function flatten(array $data) : array
{
$flat = [];
foreach ($data as $sublist) {
foreach ($sublist as $pixel) {
$flat[] = $pixel;
}
}
return $flat;
}
/**
* Find the k-nearest matches for test data
*
* @param array $Xtrain Image data used for training
* @param array $ytrain Labels associated with the trained data
* @param array $Xtrain Image data from the image to categorize
* @param int $k Amount of best fits that should be found
*/
private function kNearest(array $Xtrain, array $ytrain, array $Xtest, int $k = 3) : array
{
$predictedLabels = [];
foreach ($Xtest as $sample) {
// @todo: consider to path the k-limit to the getDistances function for earlier filtering
$distances = $this->getDistances($Xtrain, $sample);
\asort($distances);
// find possible k-labels for a image
$kKeys = \array_keys(\array_slice($distances, 0, $k));
$candidateLabels = [];
foreach ($kKeys as $key) {
$candidateLabels[] = $ytrain[$key];
}
// find best match
$countedCandidates = \array_count_values($candidateLabels);
\asort($countedCandidates);
$predictedLabels[] = ['label' => \array_key_first($countedCandidates), 'prob' => \reset($countedCandidates) / $k];
}
return $predictedLabels;
}
/**
* Fitting method in order to see how similar two datasets are.
*
* @param array $Xtrain Image data used for training
* @param array $sample Image data to compare against
*
* @return array
*
* @since 1.0.0
*/
private function getDistances(array $Xtrain, array $sample) : array
{
$dist = [];
foreach ($Xtrain as $train) {
$dist[] = MetricsND::euclidean($train, $sample);
}
return $dist;
}
/**
* Categorize an unknown image
*
* @param string $path Path to the image to categorize/evaluate/match against the training data
*
* @return array
*
* @since 1.0.0
*/
public function match(string $path) : array
{
// @todo: implement image reading if it isn't an mnist file
$Xtest = $this->readImages($path);
return $this->kNearest($this->Xtrain, $this->ytrain, $Xtest);
}
}