mirror of
https://github.com/Karaka-Management/phpOMS.git
synced 2026-01-11 09:48:40 +00:00
246 lines
6.4 KiB
PHP
246 lines
6.4 KiB
PHP
<?php
|
|
/**
|
|
* Orange Management
|
|
*
|
|
* PHP Version 7.4
|
|
*
|
|
* @package phpOMS\Algorithm\Clustering
|
|
* @copyright Dennis Eichhorn
|
|
* @license OMS License 1.0
|
|
* @version 1.0.0
|
|
* @link https://orange-management.org
|
|
*/
|
|
declare(strict_types=1);
|
|
|
|
namespace phpOMS\Algorithm\Clustering;
|
|
|
|
/**
|
|
* Clustering points
|
|
*
|
|
* @package phpOMS\Algorithm\Clustering
|
|
* @license OMS License 1.0
|
|
* @link https://orange-management.org
|
|
* @since 1.0.0
|
|
*/
|
|
final class Kmeans
|
|
{
|
|
/**
|
|
* Metric to calculate the distance between two points
|
|
*
|
|
* @var \Closure
|
|
* @since 1.0.0
|
|
*/
|
|
private \Closure $metric;
|
|
|
|
/**
|
|
* Amount of different clusters
|
|
*
|
|
* @var int
|
|
* @since 1.0.0
|
|
*/
|
|
private int $clusters = 1;
|
|
|
|
/**
|
|
* Points of the cluster centers
|
|
*
|
|
* @var PointInterface[]
|
|
* @since 1.0.0
|
|
*/
|
|
private $clusterCenters = [];
|
|
|
|
/**
|
|
* Points to clusterize
|
|
*
|
|
* @var PointInterface[]
|
|
* @since 1.0.0
|
|
*/
|
|
private array $points = [];
|
|
|
|
/**
|
|
* Constructor
|
|
*
|
|
* @param PointInterface[] $points Points to cluster
|
|
* @param int $clusters Amount of clusters
|
|
* @param null|\Closure $metric Metric to use for the distance between two points.
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public function __construct(array $points, int $clusters, \Closure $metric = null)
|
|
{
|
|
$this->points = $points;
|
|
$this->clusters = $clusters;
|
|
$this->metric = $metric ?? function (PointInterface $a, PointInterface $b) {
|
|
$aCoordinates = $a->getCoordinates();
|
|
$bCoordinates = $b->getCoordinates();
|
|
|
|
$n = \count($aCoordinates);
|
|
$sum = 0;
|
|
|
|
for ($i = 0; $i < $n; ++$i) {
|
|
$sum = ($aCoordinates[$i] - $bCoordinates[$i]) * ($aCoordinates[$i] - $bCoordinates[$i]);
|
|
}
|
|
|
|
return $sum;
|
|
};
|
|
|
|
$this->generateClusters($points, $clusters);
|
|
}
|
|
|
|
/**
|
|
* Find the cluster for a point
|
|
*
|
|
* @param PointInterface $point Point to find the cluster for
|
|
*
|
|
* @return PointInterface
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public function cluster(PointInterface $point) : PointInterface
|
|
{
|
|
$bestCluster = null;
|
|
$bestDistance = \PHP_FLOAT_MAX;
|
|
|
|
foreach ($this->clusterCenters as $center) {
|
|
if (($distance = ($this->metric)($center, $point)) < $bestDistance) {
|
|
$bestCluster = $center;
|
|
$bestDistance = $distance;
|
|
}
|
|
}
|
|
|
|
return $bestCluster;
|
|
}
|
|
|
|
/**
|
|
* Generate the clusters of the points
|
|
*
|
|
* @param PointInterface[] $points Points to cluster
|
|
* @param int $clusters Amount of clusters
|
|
*
|
|
* @return void
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function generateClusters(array $points, int $clusters) : void
|
|
{
|
|
$n = \count($points);
|
|
$clusterCenters = $this->kpp($points, $clusters);
|
|
$coordinates = \count($points[0]->getCoordinates());
|
|
|
|
while (true) {
|
|
foreach ($clusterCenters as $center) {
|
|
for ($i = 0; $i < $coordinates; ++$i) {
|
|
$center->setCoordinate($i, 0);
|
|
}
|
|
|
|
$center->setGroup(0);
|
|
}
|
|
|
|
foreach ($points as $point) {
|
|
$clusterPoint = $clusterCenters[$point->getGroup()];
|
|
|
|
$clusterPoint->setGroup(
|
|
$clusterPoint->getGroup() + 1
|
|
);
|
|
|
|
for ($i = 0; $i < $coordinates; ++$i) {
|
|
$clusterPoint->setCoordinate($i, $clusterPoint->getCoordinate($i) + $point->getCoordinate($i));
|
|
}
|
|
}
|
|
|
|
foreach ($clusterCenters as $center) {
|
|
for ($i = 0; $i < $coordinates; ++$i) {
|
|
$center->setCoordinate($i, $center->getCoordinate($i) / $center->getGroup());
|
|
}
|
|
}
|
|
|
|
$changed = 0;
|
|
foreach ($points as $point) {
|
|
$min = $this->nearestClusterCenter($point, $clusterCenters)[0];
|
|
|
|
if ($min !== $point->getGroup()) {
|
|
++$changed;
|
|
$point->setGroup($min);
|
|
}
|
|
}
|
|
|
|
if ($changed <= $n * 0.001 || $n * 0.001 < 2) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
foreach ($clusterCenters as $key => $center) {
|
|
$center->setGroup($key);
|
|
$center->setName((string) $key);
|
|
}
|
|
|
|
$this->clusterCenters = $clusterCenters;
|
|
}
|
|
|
|
/**
|
|
* Get the index and distance to the nearest cluster center
|
|
*
|
|
* @param PointInterface $point Point to get the cluster for
|
|
* @param PointInterface[] $clusterCenters All cluster centers
|
|
*
|
|
* @return array [index, distance]
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function nearestClusterCenter(PointInterface $point, array $clusterCenters) : array
|
|
{
|
|
$index = $point->getGroup();
|
|
$dist = \PHP_FLOAT_MAX;
|
|
|
|
foreach ($clusterCenters as $key => $cPoint) {
|
|
$d = ($this->metric)($cPoint, $point);
|
|
|
|
if ($dist > $d) {
|
|
$dist = $d;
|
|
$index = $key;
|
|
}
|
|
}
|
|
|
|
return [$index, $dist];
|
|
}
|
|
|
|
/**
|
|
* Initializae cluster centers
|
|
*
|
|
* @param PointInterface[] $points Points to use for the cluster center initialization
|
|
* @param int $n Amount of clusters to use
|
|
*
|
|
* @return array
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private function kpp(array $points, int $n) : array
|
|
{
|
|
$clusters = [clone $points[\mt_rand(0, \count($points) - 1)]];
|
|
$d = \array_fill(0, $n, 0.0);
|
|
|
|
for ($i = 1; $i < $n; ++$i) {
|
|
$sum = 0;
|
|
|
|
foreach ($points as $key => $point) {
|
|
$d[$key] = $this->nearestClusterCenter($point, \array_slice($clusters, 0, 5))[1];
|
|
$sum += $d[$key];
|
|
}
|
|
|
|
$sum *= \mt_rand(0, \mt_getrandmax()) / \mt_getrandmax();
|
|
|
|
foreach ($d as $key => $di) {
|
|
$sum -= $di;
|
|
|
|
if ($sum <= 0) {
|
|
$clusters[$i] = clone $points[$key];
|
|
}
|
|
}
|
|
}
|
|
|
|
foreach ($points as $point) {
|
|
$point->setGroup($this->nearestClusterCenter($point, $clusters)[0]);
|
|
}
|
|
|
|
return $clusters;
|
|
}
|
|
} |