phpOMS/Math/Statistic/Forecast/Regression/RegressionAbstract.php
2021-10-11 20:04:39 +00:00

208 lines
5.5 KiB
PHP

<?php
/**
* Orange Management
*
* PHP Version 8.0
*
* @package phpOMS\Math\Statistic\Forecast\Regression
* @copyright Dennis Eichhorn
* @license OMS License 1.0
* @version 1.0.0
* @link https://orange-management.org
*/
declare(strict_types=1);
namespace phpOMS\Math\Statistic\Forecast\Regression;
use phpOMS\Math\Matrix\Exception\InvalidDimensionException;
use phpOMS\Math\Statistic\Average;
/**
* Regression abstract class.
*
* @package phpOMS\Math\Statistic\Forecast\Regression
* @license OMS License 1.0
* @link https://orange-management.org
* @since 1.0.0
*/
abstract class RegressionAbstract
{
/**
* Get linear regression based on scatter plot.
*
* @latex y = b_{0} + b_{1} \cdot x
*
* @param array<int|float> $x Obersved x values
* @param array<int|float> $y Observed y values
*
* @return array [b0 => ?, b1 => ?]
*
* @throws InvalidDimensionException throws this exception if the dimension of both arrays is not equal
*
* @since 1.0.0
*/
public static function getRegression(array $x, array $y) : array
{
if (\count($x) !== \count($y)) {
throw new InvalidDimensionException(\count($x) . 'x' . \count($y));
}
$b1 = self::getBeta1($x, $y);
return ['b0' => self::getBeta0($x, $y, $b1), 'b1' => $b1];
}
/**
* Standard error of the regression for a population
*
* Used in order to evaluate the performance of the linear regression
*
* @latex s_{e} = \sqrt{\frac{1}{N - 2}\sum_{i = 1}^{N} e_{i}^{2}}
*
* @param array<int|float> $errors Errors (e = y - y_forecasted)
*
* @return float
*
* @since 1.0.0
*/
public static function getStandardErrorOfRegressionPopulation(array $errors) : float
{
$count = \count($errors);
$sum = 0.0;
for ($i = 0; $i < $count; ++$i) {
$sum += $errors[$i] ** 2;
}
return sqrt($sum / $count);
}
/**
* Standard error of the regression for a sample
*
* Used in order to evaluate the performance of the linear regression
*
* @latex s_{e} = \sqrt{\frac{1}{N - 2}\sum_{i = 1}^{N} e_{i}^{2}}
*
* @param array<int|float> $errors Errors (e = y - y_forecasted)
*
* @return float
*
* @since 1.0.0
*/
public static function getStandardErrorOfRegressionSample(array $errors) : float
{
$count = \count($errors);
$sum = 0.0;
for ($i = 0; $i < $count; ++$i) {
$sum += $errors[$i] ** 2;
}
return sqrt($sum / ($count - 2));
}
/**
* Get predictional interval for linear regression.
*
* @latex
*
* @param float $fX Forecasted at x value
* @param float $fY Forecasted y value
* @param array<int|float> $x observex x values
* @param float $mse Errors for y values (y - y_forecasted)
* @param float $multiplier Multiplier for interval
*
* @return array<int|float>
*
* @since 1.0.0
*/
public static function getPredictionIntervalMSE(float $fX, float $fY, array $x, float $mse, float $multiplier = 1.96) : array
{
$count = \count($x);
$meanX = Average::arithmeticMean($x);
$sum = 0.0;
for ($i = 0; $i < $count; ++$i) {
$sum += ($x[$i] - $meanX) ** 2;
}
$interval = $multiplier * sqrt($mse + $mse / $count + $mse * ($fX - $meanX) ** 2 / $sum);
return [$fY - $interval, $fY + $interval];
}
/**
* Get linear regression parameter beta 1.
*
* @latex \beta_{1} = \frac{\sum_{i=1}^{N} \left(y_{i} - \bar{y}\right)\left(x_{i} - \bar{x}\right)}{\sum_{i=1}^{N} \left(x_{i} - \bar{x}\right)^{2}}
*
* @param array<int|float> $x Obersved x values
* @param array<int|float> $y Observed y values
*
* @return float
*
* @since 1.0.0
*/
private static function getBeta1(array $x, array $y) : float
{
$count = \count($x);
$meanX = Average::arithmeticMean($x);
$meanY = Average::arithmeticMean($y);
$sum1 = 0;
$sum2 = 0;
for ($i = 0; $i < $count; ++$i) {
$sum1 += ($y[$i] - $meanY) * ($x[$i] - $meanX);
$sum2 += ($x[$i] - $meanX) ** 2;
}
return $sum1 / $sum2;
}
/**
* Get linear regression parameter beta 0.
*
* @latex \beta_{0} = \bar{x} - b_{1} \cdot \bar{x}
*
* @param array<int|float> $x Obersved x values
* @param array<int|float> $y Observed y values
* @param float $b1 Beta 1
*
* @return float
*
* @since 1.0.0
*/
private static function getBeta0(array $x, array $y, float $b1) : float
{
return Average::arithmeticMean($y) - $b1 * Average::arithmeticMean($x);
}
/**
* Get slope
*
* @param float $b1 Beta 1
* @param float $x Obersved x values
* @param float $y Observed y values
*
* @return float
*
* @since 1.0.0
*/
abstract public static function getSlope(float $b1, float $x, float $y) : float;
/**
* Get elasticity
*
* @param float $b1 Beta 1
* @param float $x Obersved x values
* @param float $y Observed y values
*
* @return float
*
* @since 1.0.0
*/
abstract public static function getElasticity(float $b1, float $x, float $y) : float;
}