mirror of
https://github.com/Karaka-Management/phpOMS.git
synced 2026-01-11 09:48:40 +00:00
258 lines
6.8 KiB
PHP
258 lines
6.8 KiB
PHP
<?php
|
|
/**
|
|
* Orange Management
|
|
*
|
|
* PHP Version 7.4
|
|
*
|
|
* @package tests
|
|
* @copyright Dennis Eichhorn
|
|
* @license OMS License 1.0
|
|
* @version 1.0.0
|
|
* @link https://orange-management.org
|
|
*/
|
|
declare(strict_types=1);
|
|
|
|
namespace phpOMS\tests\Math\Matrix;
|
|
|
|
use phpOMS\Math\Matrix\EigenvalueDecomposition;
|
|
use phpOMS\Math\Matrix\Matrix;
|
|
|
|
/**
|
|
* @testdox phpOMS\tests\Math\Matrix\EigenvalueDecompositionTest: Eigenvalue decomposition
|
|
*
|
|
* @internal
|
|
*/
|
|
class EigenvalueDecompositionTest extends \PHPUnit\Framework\TestCase
|
|
{
|
|
/**
|
|
* @testdox A matrix can be checked for symmetry
|
|
* @covers phpOMS\Math\Matrix\EigenvalueDecomposition
|
|
* @group framework
|
|
*/
|
|
public function testSymmetricSymmetryMatrix() : void
|
|
{
|
|
$A = new Matrix();
|
|
$A->setMatrix([
|
|
[3, 1, 1],
|
|
[1, 2, 2],
|
|
[1, 2, 2],
|
|
]);
|
|
|
|
$eig = new EigenvalueDecomposition($A);
|
|
|
|
self::assertTrue($eig->isSymmetric());
|
|
|
|
$B = new Matrix();
|
|
$B->setMatrix([
|
|
[3, 1, 2],
|
|
[1, 2, 2],
|
|
[1, 2, 2],
|
|
]);
|
|
|
|
$eigB = new EigenvalueDecomposition($B);
|
|
|
|
self::assertFalse($eigB->isSymmetric());
|
|
}
|
|
|
|
/**
|
|
* @testdox The eigenvalues can be calculated for a symmetric matrix
|
|
* @covers phpOMS\Math\Matrix\EigenvalueDecomposition
|
|
* @group framework
|
|
*/
|
|
public function testSymmetricMatrixEigenvalues() : void
|
|
{
|
|
$A = new Matrix();
|
|
$A->setMatrix([
|
|
[3, 1, 1],
|
|
[1, 2, 2],
|
|
[1, 2, 2],
|
|
]);
|
|
|
|
$eig = new EigenvalueDecomposition($A);
|
|
|
|
self::assertEqualsWithDelta([0, 2, 5], $eig->getRealEigenvalues()->toArray(), 0.1);
|
|
self::assertEqualsWithDelta([0, 0, 0], $eig->getImagEigenvalues()->toArray(), 0.1);
|
|
}
|
|
|
|
/**
|
|
* @testdox The V matrix of the decomposition can be calculated for a symmetric matrix
|
|
* @covers phpOMS\Math\Matrix\EigenvalueDecomposition
|
|
* @group framework
|
|
*/
|
|
public function testSymmetricMatrixV() : void
|
|
{
|
|
$A = new Matrix();
|
|
$A->setMatrix([
|
|
[3, 1, 1],
|
|
[1, 2, 2],
|
|
[1, 2, 2],
|
|
]);
|
|
|
|
$eig = new EigenvalueDecomposition($A);
|
|
|
|
self::assertEqualsWithDelta([
|
|
[0, 2 / \sqrt(6), 1 / \sqrt(3)],
|
|
[1 / \sqrt(2), -1 / \sqrt(6), 1 / \sqrt(3)],
|
|
[-1 / \sqrt(2), -1 / \sqrt(6), 1 / \sqrt(3)],
|
|
], $eig->getV()->toArray(), 0.2);
|
|
}
|
|
|
|
/**
|
|
* @testdox The D matrix of the decomposition can be calculated for a symmetric matrix
|
|
* @covers phpOMS\Math\Matrix\EigenvalueDecomposition
|
|
* @group framework
|
|
*/
|
|
public function testSymmetricMatrixD() : void
|
|
{
|
|
$A = new Matrix();
|
|
$A->setMatrix([
|
|
[3, 1, 1],
|
|
[1, 2, 2],
|
|
[1, 2, 2],
|
|
]);
|
|
|
|
$eig = new EigenvalueDecomposition($A);
|
|
|
|
self::assertEqualsWithDelta([
|
|
[0, 0, 0],
|
|
[0, 2, 0],
|
|
[0, 0, 5],
|
|
], $eig->getD()->toArray(), 0.2);
|
|
}
|
|
|
|
/**
|
|
* @testdox The eigenvalues can be calculated for a none-symmetric matrix
|
|
* @covers phpOMS\Math\Matrix\EigenvalueDecomposition
|
|
* @group framework
|
|
*/
|
|
public function testNonSymmetricMatrixEigenvalues() : void
|
|
{
|
|
$A = new Matrix();
|
|
$A->setMatrix([
|
|
[-2, -4, 2],
|
|
[-2, 1, 2],
|
|
[4, 2, 5],
|
|
]);
|
|
|
|
$eig = new EigenvalueDecomposition($A);
|
|
|
|
self::assertEqualsWithDelta([-5, 3, 6], $eig->getRealEigenvalues()->toArray(), 0.1);
|
|
self::assertEqualsWithDelta([0, 0, 0], $eig->getImagEigenvalues()->toArray(), 0.1);;
|
|
}
|
|
|
|
/**
|
|
* @testdox The V matrix of the decomposition can be calculated for a none-symmetric matrix
|
|
* @covers phpOMS\Math\Matrix\EigenvalueDecomposition
|
|
* @group framework
|
|
*/
|
|
public function testNonSymmetricMatrixV() : void
|
|
{
|
|
$A = new Matrix();
|
|
$A->setMatrix([
|
|
[-2, -4, 2],
|
|
[-2, 1, 2],
|
|
[4, 2, 5],
|
|
]);
|
|
|
|
$eig = new EigenvalueDecomposition($A);
|
|
|
|
self::assertEqualsWithDelta([
|
|
[-\sqrt(2 / 3), \sqrt(2 / 7), -1 / \sqrt(293)],
|
|
[-1 / \sqrt(6), -3 / \sqrt(14), -6 / \sqrt(293)],
|
|
[1 / \sqrt(6), -1 / \sqrt(14), -16 / \sqrt(293)],
|
|
], $eig->getV()->toArray(), 0.2);
|
|
}
|
|
|
|
/**
|
|
* @testdox The D matrix of the decomposition can be calculated for a none-symmetric matrix
|
|
* @covers phpOMS\Math\Matrix\EigenvalueDecomposition
|
|
* @group framework
|
|
*/
|
|
public function testNonSymmetricMatrixD() : void
|
|
{
|
|
$A = new Matrix();
|
|
$A->setMatrix([
|
|
[-2, -4, 2],
|
|
[-2, 1, 2],
|
|
[4, 2, 5],
|
|
]);
|
|
|
|
$eig = new EigenvalueDecomposition($A);
|
|
|
|
self::assertEqualsWithDelta([
|
|
[-5, 0, 0],
|
|
[0, 3, 0],
|
|
[0, 0, 6],
|
|
], $eig->getD()->toArray(), 0.2);
|
|
}
|
|
|
|
/**
|
|
* @testdox The decomposition can be created and the original matrix can be computed for a symmetric matrix
|
|
* @covers phpOMS\Math\Matrix\EigenvalueDecomposition
|
|
* @group framework
|
|
*/
|
|
public function testCompositeSymmetric() : void
|
|
{
|
|
$A = new Matrix();
|
|
$A->setMatrix([
|
|
[3, 1, 1],
|
|
[1, 2, 2],
|
|
[1, 2, 2],
|
|
]);
|
|
|
|
$eig = new EigenvalueDecomposition($A);
|
|
|
|
self::assertEqualsWithDelta(
|
|
$A->toArray(),
|
|
$eig->getV()
|
|
->mult($eig->getD())
|
|
->mult($eig->getV()->transpose())
|
|
->toArray()
|
|
, 0.2);
|
|
}
|
|
|
|
/**
|
|
* @testdox The decomposition can be created and the original matrix can be computed for a none-symmetric matrix
|
|
* @covers phpOMS\Math\Matrix\EigenvalueDecomposition
|
|
* @group framework
|
|
*/
|
|
public function testCompositeNonSymmetric() : void
|
|
{
|
|
$A = new Matrix();
|
|
$A->setMatrix([
|
|
[-2, -4, 2],
|
|
[-2, 1, 2],
|
|
[4, 2, 5],
|
|
]);
|
|
|
|
$eig = new EigenvalueDecomposition($A);
|
|
|
|
self::assertEqualsWithDelta(
|
|
$A->toArray(),
|
|
$eig->getV()
|
|
->mult($eig->getD())
|
|
->mult($eig->getV()->inverse())
|
|
->toArray(),
|
|
0.2
|
|
);
|
|
}
|
|
|
|
public function testComplexEigenvalueDecomposition() : void
|
|
{
|
|
$A = new Matrix();
|
|
$A->setMatrix([
|
|
[3, -2],
|
|
[4, -1],
|
|
]);
|
|
|
|
$eig = new EigenvalueDecomposition($A);
|
|
self::assertEqualsWithDelta([
|
|
[1, 2],
|
|
[-2, 1],
|
|
], $eig->getD()->toArray(), 0.1);
|
|
|
|
self::assertEqualsWithDelta([1, 1], $eig->getRealEigenvalues()->toArray(), 0.1);
|
|
self::assertEqualsWithDelta([2, -2], $eig->getImagEigenvalues()->toArray(), 0.1);
|
|
}
|
|
}
|