phpOMS/Algorithm/Clustering/Kmeans.php
Dennis Eichhorn 126fca5574 fix tests
2024-04-24 20:34:29 +00:00

279 lines
6.7 KiB
PHP
Executable File

<?php
/**
* Jingga
*
* PHP Version 8.2
*
* @package phpOMS\Algorithm\Clustering
* @copyright Dennis Eichhorn
* @license OMS License 2.0
* @version 1.0.0
* @link https://jingga.app
*/
declare(strict_types=1);
namespace phpOMS\Algorithm\Clustering;
use phpOMS\Math\Topology\MetricsND;
/**
* Clustering points
*
* @package phpOMS\Algorithm\Clustering
* @license OMS License 2.0
* @link https://jingga.app
* @see ./clustering_overview.png
* @since 1.0.0
*/
final class Kmeans implements ClusteringInterface
{
/**
* Epsilon for float comparison.
*
* @var float
* @since 1.0.0
*/
public const EPSILON = 4.88e-04;
/**
* Metric to calculate the distance between two points
*
* @var \Closure
* @since 1.0.0
*/
private \Closure $metric;
/**
* Points of the cluster centers
*
* @var Point[]
* @since 1.0.0
*/
private array $clusterCenters = [];
/**
* Points of the clusters
*
* @var Point[]
* @since 1.0.0
*/
private array $clusters = [];
/**
* Points
*
* @var Point[]
* @since 1.0.0
*/
private array $points = [];
/**
* Constructor
*
* @param null|\Closure $metric metric to use for the distance between two points
*
* @since 1.0.0
*/
public function __construct(?\Closure $metric = null)
{
$this->metric = $metric ?? function (Point $a, Point $b) {
$aCoordinates = $a->coordinates;
$bCoordinates = $b->coordinates;
return MetricsND::euclidean($aCoordinates, $bCoordinates);
};
}
/**
* {@inheritdoc}
*/
public function cluster(Point $point) : ?Point
{
$bestCluster = null;
$bestDistance = \PHP_FLOAT_MAX;
foreach ($this->clusterCenters as $center) {
if (($distance = ($this->metric)($center, $point)) < $bestDistance) {
$bestCluster = $center;
$bestDistance = $distance;
}
}
return $bestCluster;
}
/**
* {@inheritdoc}
*/
public function getCentroids() : array
{
return $this->clusterCenters;
}
/**
* {@inheritdoc}
*/
public function getNoise() : array
{
return [];
}
/**
* Generate the clusters of the points
*
* @param Point[] $points Points to cluster
* @param int<1, max> $clusters Amount of clusters
*
* @return void
*
* @since 1.0.0
*/
public function generateClusters(array $points, int $clusters) : void
{
$this->points = $points;
$n = \count($points);
$clusterCenters = $this->kpp($points, $clusters);
$coordinates = \count($points[0]->coordinates);
while (true) {
foreach ($clusterCenters as $center) {
for ($i = 0; $i < $coordinates; ++$i) {
$center->setCoordinate($i, 0);
}
}
foreach ($points as $point) {
$clusterPoint = $clusterCenters[$point->group];
++$clusterPoint->group;
for ($i = 0; $i < $coordinates; ++$i) {
$clusterPoint->setCoordinate($i, $clusterPoint->getCoordinate($i) + $point->getCoordinate($i));
}
}
foreach ($clusterCenters as $center) {
for ($i = 0; $i < $coordinates; ++$i) {
$center->setCoordinate($i, $center->getCoordinate($i) / $center->group);
}
}
$changed = 0;
foreach ($points as $point) {
$min = $this->nearestClusterCenter($point, $clusterCenters)[0];
if ($clusters !== $point->group) {
++$changed;
$point->group = $min;
}
}
if ($changed <= $n * self::EPSILON || $n * self::EPSILON < 2) {
break;
}
}
foreach ($clusterCenters as $key => $center) {
$center->group = $key;
$center->name = (string) $key;
}
$this->clusterCenters = $clusterCenters;
}
/**
* Get the index and distance to the nearest cluster center
*
* @param Point $point Point to get the cluster for
* @param Point[] $clusterCenters All cluster centers
*
* @return array [index, distance]
*
* @since 1.0.0
*/
private function nearestClusterCenter(Point $point, array $clusterCenters) : array
{
$index = $point->group;
$dist = \PHP_FLOAT_MAX;
foreach ($clusterCenters as $key => $cPoint) {
$d = ($this->metric)($cPoint, $point);
if ($dist > $d) {
$dist = $d;
$index = $key;
}
}
return [$index, $dist];
}
/**
* Initialize cluster centers
*
* @param Point[] $points Points to use for the cluster center initialization
* @param int<0, max> $n Amount of clusters to use
*
* @return Point[]
*
* @since 1.0.0
*/
private function kpp(array $points, int $n) : array
{
$clusters = [clone $points[\array_rand($points, 1)]];
$d = \array_fill(0, $n, 0.0);
for ($i = 1; $i < $n; ++$i) {
$sum = 0;
foreach ($points as $key => $point) {
$d[$key] = $this->nearestClusterCenter($point, $clusters)[1];
$sum += $d[$key];
}
$sum *= \mt_rand(0, \mt_getrandmax()) / \mt_getrandmax();
$found = false;
foreach ($d as $key => $di) {
$sum -= $di;
// The in array check is important to avoid duplicate cluster centers
if ($sum <= 0 && !\in_array($c = $points[$key], $clusters)) {
$clusters[$i] = clone $c;
$found = true;
}
}
while (!$found) {
if (!\in_array($c = $points[\array_rand($points)], $clusters)) {
$clusters[$i] = clone $c;
$found = true;
}
}
}
foreach ($points as $point) {
$point->group = $this->nearestClusterCenter($point, $clusters)[0];
}
return $clusters;
}
/**
* {@inheritdoc}
*/
public function getClusters() : array
{
if (!empty($this->clusters)) {
return $this->clusters;
}
foreach ($this->points as $point) {
$c = $this->cluster($point);
$this->clusters[$c?->name] = $point;
}
return $this->clusters;
}
}