phpOMS/Math/Optimization/Simplex.php
2023-11-11 21:44:06 +00:00

402 lines
9.6 KiB
PHP

<?php
/**
* Jingga
*
* PHP Version 8.1
*
* @package phpOMS\Math\Optimization
* @copyright Dennis Eichhorn
* @license OMS License 2.0
* @version 1.0.0
* @link https://jingga.app
*/
declare(strict_types=1);
namespace phpOMS\Math\Optimization;
/**
* Simplex class.
*
* The Simplex algorithm aims to solve a linear program - optimising a linear function subject
* to linear constraints. As such it is useful for a very wide range of applications.
*
* N.B. The linear program has to be given in *slack form*, which is as follows:
* maximise
* c_1 * x_1 + c_2 * x_2 + ... + c_n * x_n + v
* subj. to
* a_11 * x_1 + a_12 * x_2 + ... + a_1n * x_n + b_1 = s_1
* a_21 * x_1 + a_22 * x_2 + ... + a_2n * x_n + b_2 = s_2
* ...
* a_m1 * x_1 + a_m2 * x_2 + ... + a_mn * x_n + b_m = s_m
* and
* x_1, x_2, ..., x_n, s_1, s_2, ..., s_m >= 0
*
* Every linear program can be translated into slack form; the parameters to specify are:
* - the number of variables, n, and the number of constraints, m;
* - the matrix A = [[A_11, A_12, ..., A_1n], ..., [A_m1, A_m2, ..., A_mn]];
* - the vector b = [b_1, b_2, ..., b_m];
* - the vector c = [c_1, c_2, ..., c_n] and the constant v.
*
* Complexity: O(m^(n/2)) worst case
* O(n + m) average case (common)
*
* @package phpOMS\Math\Optimization
* @license Copyright (c) 2015 Petar Veličković
* @license OMS License 2.0
* @link https://jingga.app
* @link https://github.com/PetarV-/Algorithms/blob/master/Mathematical%20Algorithms/Simplex%20Algorithm.cpp
* @since 1.0.0
*/
final class Simplex
{
/**
* Bounding equations
*
* @var int
* @since 1.0.0
*/
private int $m = 0;
/**
* Bounding variables
*
* @var int
* @since 1.0.0
*/
private int $n = 0;
/**
* Bounding equations
*
* @var array<int, array<int|float>>
* @since 1.0.0
*/
private array $A = [];
/**
* Bounds for bounding equations
*
* @var array<int|float>
* @since 1.0.0
*/
private array $b = [];
/**
* Maximize vector
*
* @var array<int|float>
* @since 1.0.0
*/
private array $c = [];
/**
* Maximized value
*
* @var float
* @since 1.0.0
*/
private float $v = 0.0;
/**
* Basic solutions
*
* @var array<int|float>
* @since 1.0.0
*/
private array $basic = [];
/**
* Non-basic solutions
*
* @var array<int|float>
* @since 1.0.0
*/
private array $nonbasic = [];
/**
* Pivot yth variable around xth constraint
*
* @param int $x Constraint index
* @param int $y Variable index
*
* @return void
*
* @since 1.0.0
*/
private function pivot(int $x, int $y) : void
{
for ($j = 0; $j < $this->n; ++$j) {
if ($j !== $y) {
$this->A[$x][$j] /= -$this->A[$x][$y];
}
}
$this->b[$x] /= -$this->A[$x][$y];
$this->A[$x][$y] = 1.0 / $this->A[$x][$y];
for ($i = 0; $i < $this->m; ++$i) {
if ($i !== $x) {
for ($j = 0; $j < $this->n; ++$j) {
if ($j !== $y) {
$this->A[$i][$j] += $this->A[$i][$y] * $this->A[$x][$j];
}
}
$this->b[$i] += $this->A[$i][$y] * $this->b[$x];
$this->A[$i][$y] *= $this->A[$x][$y];
}
}
for ($j = 0; $j < $this->n; ++$j) {
if ($j !== $y) {
$this->c[$j] += $this->c[$y] * $this->A[$x][$j];
}
}
$this->v += $this->c[$y] * $this->b[$x];
$this->c[$y] *= $this->A[$x][$y];
$temp = $this->basic[$x];
$this->basic[$x] = $this->nonbasic[$y];
$this->nonbasic[$y] = $temp;
}
/**
* Perform simplex iteration step
*
* @return int 0 = OK, 1 = stop, -1 = unbound
*
* @since 1.0.0
*/
private function iterate() : int
{
$ind = -1;
$best = -1;
for ($j = 0; $j < $this->n; ++$j) {
if ($this->c[$j] > 0
&& ($best === -1 || $this->nonbasic[$j] < $ind)
) {
$ind = $this->nonbasic[$j];
$best = $j;
}
}
if ($ind === -1) {
return 1;
}
$maxConstraint = \INF;
$bestConstraint = -1;
for ($i = 0; $i < $this->m; ++$i) {
if ($this->A[$i][$best] < 0) {
$currentConstraint = -$this->b[$i] / $this->A[$i][$best];
if ($currentConstraint < $maxConstraint) {
$maxConstraint = $currentConstraint;
$bestConstraint = $i;
}
}
}
if ($maxConstraint === \INF) {
return -1;
}
$this->pivot($bestConstraint, $best);
return 0;
}
/**
* Initialize simplex algorithm
*
* 1. possibly converts LP to slack form
* 2. find feasible basic solution
*
* @return int 0 = OK, 1 = stop, -1 = unbound
*
* @since 1.0.0
*/
private function initialize() : int
{
$k = -1;
$minB = -1;
for ($i = 0; $i < $this->m; ++$i) {
if ($k === -1 || $this->b[$i] < $minB) {
$k = $i;
$minB = $this->b[$i];
}
}
if ($this->b[$k] >= 0) {
for ($j = 0; $j < $this->n; ++$j) {
$this->nonbasic[$j] = $j;
}
for ($i = 0; $i < $this->m; ++$i) {
$this->basic[$i] = $this->n + $i;
}
return 0;
}
++$this->n;
for ($j = 0; $j < $this->n; ++$j) {
$this->nonbasic[$j] = $j;
}
for ($i = 0; $i < $this->m; ++$i) {
$this->basic[$i] = $this->n + $i;
}
$oldC = [];
for ($j = 0; $j < $this->n - 1; ++$j) {
$oldC[$j] = $this->c[$j];
}
$oldV = $this->v;
$this->c[$this->n - 1] = -1;
for ($j = 0; $j < $this->n - 1; ++$j) {
$this->c[$j] = 0;
}
$this->v = 0.0;
for ($i = 0; $i < $this->m; ++$i) {
$this->A[$i][$this->n - 1] = 1;
}
$this->pivot($k, $this->n - 1);
while (!$this->iterate());
if ($this->v !== 0.0) {
return -1;
}
$basicZ = -1;
for ($i = 0; $i < $this->m; ++$i) {
if ($this->basic[$i] === $this->n - 1) {
$basicZ = $i;
break;
}
}
if ($basicZ !== -1) {
$this->pivot($basicZ, $this->n - 1);
}
$nonbasicZ = -1;
for ($j = 0; $j < $this->n; ++$j) {
if ($this->nonbasic[$j] === $this->n - 1) {
$nonbasicZ = $j;
break;
}
}
for ($i = 0; $i < $this->m; ++$i) {
$this->A[$i][$nonbasicZ] = $this->A[$i][$this->n - 1];
}
$temp = $this->nonbasic[$nonbasicZ];
$this->nonbasic[$nonbasicZ] = $this->nonbasic[$this->n - 1];
$this->nonbasic[$this->n - 1] = $temp;
--$this->n;
for ($j = 0; $j < $this->n; ++$j) {
if ($this->nonbasic[$j] > $this->n) {
--$this->nonbasic[$j];
}
}
for ($i = 0; $i < $this->m; ++$i) {
if ($this->basic[$i] > $this->n) {
--$this->basic[$i];
}
}
for ($j = 0; $j < $this->n; ++$j) {
$this->c[$j] = 0;
}
$this->v = $oldV;
for ($j = 0; $j < $this->n; ++$j) {
$ok = false;
for ($k = 0; $k < $this->n; ++$k) {
if ($j === $this->nonbasic[$k]) {
$this->c[$k] += $oldC[$j];
$ok = true;
break;
}
}
if ($ok) {
continue;
}
for ($i = 0; $i < $this->m; ++$i) {
if ($j === $this->basic[$i]) {
for ($k = 0; $k < $this->n; ++$k) {
$this->c[$k] = $oldC[$j] * $this->A[$i][$k];
}
$this->v += $oldC[$j] * $this->b[$i];
break;
}
}
}
return 0;
}
/**
* Solve simplex problem
*
* @param array<int, array<int|float>> $A Bounding equations
* @param int[]|float[] $b Boundings for equations
* @param int[]|float[] $c Equation to maximize
*
* @return array{0:array<int|float>, 1:float}
*
* @since 1.0.0
*/
public function solve(array $A, array $b, array $c) : array
{
$this->A = $A;
$this->b = $b;
$this->c = $c;
// @todo: createSlackForm() required?
// @todo: create minimize
$this->m = \count($A);
$this->n = \count(\reset($A));
if ($this->initialize() === -1) {
return [\array_fill(0, $this->m + $this->n, -2), \INF];
}
$code = 0;
while (!($code = $this->iterate()));
if ($code === -1) {
return [\array_fill(0, $this->m + $this->n, -1), \INF];
}
$result = [];
for ($j = 0; $j < $this->n; ++$j) {
$result[$this->nonbasic[$j]] = 0;
}
for ($i = 0; $i < $this->m; ++$i) {
$result[$this->basic[$i]] = $this->b[$i];
}
return [$result, $this->v];
}
}