phpOMS/tests/Math/Statistic/Forecast/Regression/LogLogRegressionTest.php
2024-03-20 07:21:26 +00:00

74 lines
2.2 KiB
PHP
Executable File

<?php
/**
* Jingga
*
* PHP Version 8.2
*
* @package tests
* @copyright Dennis Eichhorn
* @license OMS License 2.0
* @version 1.0.0
* @link https://jingga.app
*/
declare(strict_types=1);
namespace phpOMS\tests\Math\Statistic\Forecast\Regression;
use phpOMS\Math\Statistic\Forecast\Regression\LogLogRegression;
/**
* @internal
*/
#[\PHPUnit\Framework\Attributes\TestDox('phpOMS\tests\Math\Statistic\Forecast\Regression\LogLogRegressionTest: Log log regression')]
final class LogLogRegressionTest extends \PHPUnit\Framework\TestCase
{
protected $reg = null;
/**
* {@inheritdoc}
*/
protected function setUp() : void
{
// ln(y) = 2 + 3 * ln(x) => y = e^(2 + 3 * ln(x))
$x = [0.25, 0.5, 1, 1.5];
$y = [0.115, 0.924, 7.389, 24.938];
$this->reg = LogLogRegression::getRegression($x, $y);
}
#[\PHPUnit\Framework\Attributes\Group('framework')]
#[\PHPUnit\Framework\Attributes\TestDox('The regression parameters are calculated correctly')]
public function testRegression() : void
{
self::assertEqualsWithDelta(['b0' => 2, 'b1' => 3], $this->reg, 0.2);
}
#[\PHPUnit\Framework\Attributes\Group('framework')]
#[\PHPUnit\Framework\Attributes\TestDox('The slope is calculated correctly')]
public function testSlope() : void
{
$y = 3;
$x = 2;
self::assertEqualsWithDelta($this->reg['b1'] * $y / $x, LogLogRegression::getSlope($this->reg['b1'], $y, $x), 0.2);
}
#[\PHPUnit\Framework\Attributes\Group('framework')]
#[\PHPUnit\Framework\Attributes\TestDox('The elasticity is calculated correctly')]
public function testElasticity() : void
{
self::assertEqualsWithDelta($this->reg['b1'], LogLogRegression::getElasticity($this->reg['b1'], 0, 0), 0.2);
}
#[\PHPUnit\Framework\Attributes\Group('framework')]
#[\PHPUnit\Framework\Attributes\TestDox('Different dimension sizes for x and y coordinates throw a InvalidDimensionException')]
public function testInvalidDimension() : void
{
$this->expectException(\phpOMS\Math\Matrix\Exception\InvalidDimensionException::class);
$x = [1,2, 3];
$y = [1,2, 3, 4];
LogLogRegression::getRegression($x, $y);
}
}