mirror of
https://github.com/Karaka-Management/phpOMS.git
synced 2026-01-11 01:38:41 +00:00
407 lines
8.7 KiB
PHP
Executable File
407 lines
8.7 KiB
PHP
Executable File
<?php
|
|
/**
|
|
* Jingga
|
|
*
|
|
* PHP Version 8.2
|
|
*
|
|
* @package phpOMS\Math\Functions
|
|
* @copyright Dennis Eichhorn
|
|
* @license OMS License 2.0
|
|
* @version 1.0.0
|
|
* @link https://jingga.app
|
|
*/
|
|
declare(strict_types=1);
|
|
|
|
namespace phpOMS\Math\Functions;
|
|
|
|
/**
|
|
* Well known functions and helpers class.
|
|
*
|
|
* @package phpOMS\Math\Functions
|
|
* @license OMS License 2.0
|
|
* @link https://jingga.app
|
|
* @since 1.0.0
|
|
*/
|
|
final class Functions
|
|
{
|
|
/**
|
|
* Epsilon for float comparison.
|
|
*
|
|
* @var float
|
|
* @since 1.0.0
|
|
*/
|
|
public const EPSILON = 4.88e-04;
|
|
|
|
/**
|
|
* Constructor.
|
|
*
|
|
* @since 1.0.0
|
|
* @codeCoverageIgnore
|
|
*/
|
|
private function __construct()
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Calculate gammar function value.
|
|
*
|
|
* Example: (7, 2)
|
|
*
|
|
* @param int $n Factorial upper bound
|
|
* @param int $start Factorial starting value
|
|
*
|
|
* @return int
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function fact(int $n, int $start = 1) : int
|
|
{
|
|
$fact = 1;
|
|
|
|
for ($i = $start; $i < $n + 1; ++$i) {
|
|
$fact *= $i;
|
|
}
|
|
|
|
return $fact;
|
|
}
|
|
|
|
/**
|
|
* Calculate binomial coefficient
|
|
*
|
|
* Algorithm optimized for large factorials without the use of big int or string manipulation.
|
|
*
|
|
* Example: (7, 2)
|
|
*
|
|
* @param int $n n
|
|
* @param int $k k
|
|
*
|
|
* @return int
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function binomialCoefficient(int $n, int $k) : int
|
|
{
|
|
$max = \max([$k, $n - $k]);
|
|
$min = \min([$k, $n - $k]);
|
|
|
|
$fact = 1;
|
|
$range = \array_reverse(\range(1, $min));
|
|
|
|
for ($i = $max + 1; $i < $n + 1; ++$i) {
|
|
$div = 1;
|
|
foreach ($range as $key => $d) {
|
|
if ($i % $d === 0) {
|
|
$div = $d;
|
|
|
|
unset($range[$key]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
$fact *= $i / $div;
|
|
}
|
|
|
|
$fact2 = 1;
|
|
|
|
foreach ($range as $d) {
|
|
$fact2 *= $d;
|
|
}
|
|
|
|
return (int) ($fact / $fact2);
|
|
}
|
|
|
|
/**
|
|
* Calculate ackermann function.
|
|
*
|
|
* @param int $m m
|
|
* @param int $n n
|
|
*
|
|
* @return int
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function ackermann(int $m, int $n) : int
|
|
{
|
|
if ($m === 0) {
|
|
return $n + 1;
|
|
} elseif ($n === 0) {
|
|
return self::ackermann($m - 1, 1);
|
|
}
|
|
|
|
return self::ackermann($m - 1, self::ackermann($m, $n - 1));
|
|
}
|
|
|
|
/**
|
|
* Calculate inverse modular.
|
|
*
|
|
* @param int $a a
|
|
* @param int $n Modulo
|
|
*
|
|
* @return int
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function invMod(int $a, int $n) : int
|
|
{
|
|
if ($n < 0) {
|
|
$n = -$n;
|
|
}
|
|
|
|
if ($a < 0) {
|
|
$a = $n - (-$a % $n);
|
|
}
|
|
|
|
$t = 0;
|
|
$nt = 1;
|
|
$r = $n;
|
|
$nr = $a % $n;
|
|
|
|
while ($nr != 0) {
|
|
$quot = (int) ($r / $nr);
|
|
$tmp = $nt;
|
|
$nt = $t - $quot * $nt;
|
|
$t = $tmp;
|
|
$tmp = $nr;
|
|
$nr = $r - $quot * $nr;
|
|
$r = $tmp;
|
|
}
|
|
|
|
if ($r > 1) {
|
|
return -1;
|
|
}
|
|
|
|
if ($t < 0) {
|
|
$t += $n;
|
|
}
|
|
|
|
return $t;
|
|
}
|
|
|
|
/**
|
|
* Modular implementation for negative values.
|
|
*
|
|
* @param int $a a
|
|
* @param int $b b
|
|
*
|
|
* @return int
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function mod(int $a, int $b) : int
|
|
{
|
|
if ($a < 0) {
|
|
return ($a + $b) % $b;
|
|
}
|
|
|
|
return $a % $b;
|
|
}
|
|
|
|
/**
|
|
* Modular implementation for float values
|
|
*
|
|
* @param float $a a
|
|
* @param float $b b
|
|
*
|
|
* @return float
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function modFloat(float $a, float $b) : float
|
|
{
|
|
return $a - ((int) ($a / $b)) * $b;
|
|
}
|
|
|
|
/**
|
|
* Check if value is odd.
|
|
*
|
|
* @param int $a Value to test
|
|
*
|
|
* @return bool
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function isOdd(int $a) : bool
|
|
{
|
|
return (bool) ($a & 1);
|
|
}
|
|
|
|
/**
|
|
* Check if value is even.
|
|
*
|
|
* @param int $a Value to test
|
|
*
|
|
* @return bool
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function isEven(int $a) : bool
|
|
{
|
|
return !((bool) ($a & 1));
|
|
}
|
|
|
|
/**
|
|
* Gets the relative position on a circular construct.
|
|
*
|
|
* @example The relative fiscal month (August) in a company where the fiscal year starts in July.
|
|
* @example 2 = getRelativeDegree(8, 12, 7);
|
|
*
|
|
* @param int $value Value to get degree
|
|
* @param int $length Circle size
|
|
* @param int $start Start value
|
|
*
|
|
* @return int Lowest value is 0 and highest value is length - 1
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function getRelativeDegree(int $value, int $length, int $start = 0) : int
|
|
{
|
|
return \abs(self::mod($value - $start, $length));
|
|
}
|
|
|
|
/**
|
|
* Error function coefficients for approximation
|
|
*
|
|
* @var float[]
|
|
* @since 1.0.0
|
|
*/
|
|
private const ERF_COF = [
|
|
-1.3026537197817094, 6.4196979235649026e-1,
|
|
1.9476473204185836e-2,-9.561514786808631e-3,-9.46595344482036e-4,
|
|
3.66839497852761e-4,4.2523324806907e-5,-2.0278578112534e-5,
|
|
-1.624290004647e-6,1.303655835580e-6,1.5626441722e-8,-8.5238095915e-8,
|
|
6.529054439e-9,5.059343495e-9,-9.91364156e-10,-2.27365122e-10,
|
|
9.6467911e-11, 2.394038e-12,-6.886027e-12,8.94487e-13, 3.13092e-13,
|
|
-1.12708e-13,3.81e-16,7.106e-15,-1.523e-15,-9.4e-17,1.21e-16,-2.8e-17,
|
|
];
|
|
|
|
/**
|
|
* Error function
|
|
*
|
|
* @param float $x X-Value
|
|
*
|
|
* @return float
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function getErf(float $x) : float
|
|
{
|
|
return $x > 0.0
|
|
? 1.0 - self::erfccheb($x)
|
|
: self::erfccheb(-$x) - 1.0;
|
|
}
|
|
|
|
/**
|
|
* Complementary error function
|
|
*
|
|
* @param float $x X-Value
|
|
*
|
|
* @return float
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function getErfc(float $x) : float
|
|
{
|
|
return $x > 0.0
|
|
? self::erfccheb($x)
|
|
: 2.0 - self::erfccheb(-$x);
|
|
}
|
|
|
|
/**
|
|
* Error function helper function
|
|
*
|
|
* @param float $z Z-Value
|
|
*
|
|
* @return float
|
|
*
|
|
* @throws \InvalidArgumentException
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
private static function erfccheb(float $z) : float
|
|
{
|
|
$d = 0.;
|
|
$dd = 0.;
|
|
|
|
$ncof = \count(self::ERF_COF);
|
|
|
|
if ($z < 0.) {
|
|
throw new \InvalidArgumentException("erfccheb requires nonnegative argument");
|
|
}
|
|
|
|
$t = 2. / (2. + $z);
|
|
$ty = 4. * $t - 2.;
|
|
|
|
for ($j = $ncof - 1; $j > 0; --$j) {
|
|
$tmp = $d;
|
|
$d = $ty * $d - $dd + self::ERF_COF[$j];
|
|
$dd = $tmp;
|
|
}
|
|
|
|
return $t * \exp(-$z * $z + 0.5 * (self::ERF_COF[0] + $ty * $d) - $dd);
|
|
}
|
|
|
|
/**
|
|
* Inverse complementary error function
|
|
*
|
|
* @param float $p P-Value
|
|
*
|
|
* @return float
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function getInvErfc(float $p) : float
|
|
{
|
|
if ($p >= 2.0) {
|
|
return -100.;
|
|
} elseif ($p <= 0.0) {
|
|
return 100.;
|
|
}
|
|
|
|
$pp = ($p < 1.0) ? $p : 2. - $p;
|
|
$t = \sqrt(-2. * \log($pp / 2.));
|
|
$x = -0.70711 * ((2.30753 + $t * 0.27061) / (1. + $t * (0.99229 + $t * 0.04481)) - $t);
|
|
|
|
for ($j = 0; $j < 2; ++$j) {
|
|
$err = self::getErfc($x) - $pp;
|
|
$x += $err / (1.12837916709551257 * \exp(-($x * $x)) - $x * $err);
|
|
}
|
|
|
|
return ($p < 1.0? $x : -$x);
|
|
}
|
|
|
|
/**
|
|
* Generalized hypergeometric function.
|
|
*
|
|
* pFq(a1, ..., ap; b1, ..., bq; z)
|
|
*
|
|
* @param array<int, float|int> $a Array of values
|
|
* @param array<int, float|int> $b Array of values
|
|
* @param float $z Z
|
|
*
|
|
* @return float
|
|
*
|
|
* @since 1.0.0
|
|
*/
|
|
public static function generalizedHypergeometricFunction(array $a, array $b, float $z) : float
|
|
{
|
|
$sum = 0.0;
|
|
$aProd = \array_fill(0, 20, []);
|
|
$bProd = \array_fill(0, 20, []);
|
|
|
|
for ($n = 0; $n < 20; ++$n) {
|
|
foreach ($a as $key => $value) {
|
|
$aProd[$n][$key] = $n === 0 ? 1 : $aProd[$n - 1][$key] * ($value + $n - 1);
|
|
}
|
|
|
|
foreach ($b as $key => $value) {
|
|
$bProd[$n][$key] = $n === 0 ? 1 : $bProd[$n - 1][$key] * ($value + $n - 1);
|
|
}
|
|
|
|
$temp = \array_product($aProd[$n]) / \array_product($bProd[$n]);
|
|
$sum += $temp * $z ** $n / self::fact($n);
|
|
}
|
|
|
|
return $sum;
|
|
}
|
|
}
|