* @author Dennis Eichhorn * @copyright Dennis Eichhorn * @license OMS License 1.0 * @version 1.0.0 * @link http://orange-management.com */ declare(strict_types=1); namespace phpOMS\Math\Finance\Forecasting\ExponentialSmoothing; use phpOMS\Math\Finance\Forecasting\SmoothingType; use phpOMS\Math\Statistic\Average; use phpOMS\Math\Statistic\Forecast\Error; class ExponentialSmoothing { private $data = []; private $errors = []; private $rmse = 0.0; private $mse = 0.0; private $mae = 0.0; private $sse = 0.0; public function __construct(array $data) { $this->data = $data; } public function getRMSE() : float { return $this->rmse; } public function getMSE() : float { return $this->mse; } public function getMAE() : float { return $this->mae; } public function getSSE() : float { return $this->sse; } public function getErrors() : array { return $this->errors; } public function getForecast(int $future, int $trendType = TrendType::NONE, int $seasonalType = SeasonalType::NONE, int $cycle = 12, float $damping = 1) : array { $this->rmse = PHP_INT_MAX; if($trendType === TrendType::ALL || $seasonalType === SeasonalType::ALL) { $trends = [$trendType]; if($trendType === TrendType::ALL) { $trends = [TrendType::NONE, TrendType::ADDITIVE, TrendType::MULTIPLICATIVE]; } $seasonals = [$seasonalType]; if($seasonalType === SeasonalType::ALL) { $seasonals = [SeasonalType::NONE, SeasonalType::ADDITIVE, SeasonalType::MULTIPLICATIVE]; } $forecast = []; $bestError = PHP_INT_MAX; foreach($trends as $trend) { foreach($seasonals as $seasonal) { $tempForecast = $this->getForecast($future, $trend, $seasonal, $cycle, $damping); if ($this->rmse < $bestError) { $bestError = $this->rmse; $forecast = $tempForecast; } } } return $forecast; } elseif($trendType === TrendType::NONE && $seasonalType === SeasonalType::NONE) { return $this->getNoneNone($future); } elseif($trendType === TrendType::NONE && $seasonalType === SeasonalType::ADDITIVE) { return $this->getNoneAdditive($future, $cycle); } elseif($trendType === TrendType::NONE && $seasonalType === SeasonalType::MULTIPLICATIVE) { return $this->getNoneMultiplicative($future, $cycle); } elseif($trendType === TrendType::ADDITIVE && $seasonalType === SeasonalType::NONE) { return $this->getAdditiveNone($future, $damping); } elseif($trendType === TrendType::ADDITIVE && $seasonalType === SeasonalType::ADDITIVE) { return $this->getAdditiveAdditive($future, $cycle, $damping); } elseif($trendType === TrendType::ADDITIVE && $seasonalType === SeasonalType::MULTIPLICATIVE) { return $this->getAdditiveMultiplicative($future, $cycle, $damping); } elseif($trendType === TrendType::MULTIPLICATIVE && $seasonalType === SeasonalType::NONE) { return $this->getMultiplicativeNone($future, $damping); } elseif($trendType === TrendType::MULTIPLICATIVE && $seasonalType === SeasonalType::ADDITIVE) { return $this->getMultiplicativeAdditive($future, $cycle, $damping); } elseif($trendType === TrendType::MULTIPLICATIVE && $seasonalType === SeasonalType::MULTIPLICATIVE) { return $this->getMultiplicativeMultiplicative($future, $cycle, $damping); } throw new \Exception(); } private function dampingSum(float $damping, int $length) : float { if(abs($damping - 1) < 0.001) { return $length; } $sum = 0; for($i = 0; $i < $length; $i++) { $sum += pow($damping, $i); } return $sum; } public function getNoneNone(int $future) : array { $level = [$this->data[0]]; $dataLength = count($this->data) + $future; $forecast = []; $alpha = 0.00; while ($alpha < 1) { $error = []; $tempForecast = []; for($i = 1; $i < $dataLength; $i++) { $level[$i] = $alpha * ($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) + (1 - $alpha) * $level[$i-1]; $tempForecast[$i] = $level[$i]; $error[] = $i < $dataLength - $future ? $this->data[$i] - $tempForecast[$i] : 0; } $tempRMSE = Error::getRootMeanSquaredError($error); if ($tempRMSE < $this->rmse) { $this->rmse = $tempRMSE; $forecast = $tempForecast; } $alpha += 0.01; } $this->errors = $error; $this->mse = Error::getMeanSquaredError($error); $this->mae = Error::getMeanAbsoulteError($error); $this->sse = Error::getSumSquaredError($error); return $forecast; } public function getNoneAdditive(int $future, int $cycle) : array { $level = [$this->data[0]]; $dataLength = count($this->data) + $future; $forecast = []; $seasonal = []; for($i = 1; $i < $cycle+1; $i++) { $seasonal[$i] = $this->data[$i-1] - $level[0]; } $alpha = 0.00; while ($alpha < 1) { $gamma = 0.00; while($gamma < 1) { $gamma_ = $gamma * (1 - $alpha); $error = []; $tempForecast = []; for($i = 1; $i < $dataLength; $i++) { $hm = (int) floor(($i-1) % $cycle) + 1; $level[$i] = $alpha * (($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) - $seasonal[$i]) + (1 - $alpha) * $level[$i-1]; $seasonal[$i+$cycle] = $gamma_*(($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) - $level[$i-1]) + (1 - $gamma_) * $seasonal[$i]; $tempForecast[$i] = $level[$i] + $seasonal[$i+$hm]; $error[] = $i < $dataLength - $future ? $this->data[$i] - $tempForecast[$i] : 0; } $tempRMSE = Error::getRootMeanSquaredError($error); if ($tempRMSE < $this->rmse) { $this->rmse = $tempRMSE; $forecast = $tempForecast; } $gamma += 0.01; } $alpha += 0.01; } $this->errors = $error; $this->mse = Error::getMeanSquaredError($error); $this->mae = Error::getMeanAbsoulteError($error); $this->sse = Error::getSumSquaredError($error); return $forecast; } public function getNoneMultiplicative(int $future, int $cycle) : array { $level = [$this->data[0]]; $dataLength = count($this->data) + $future; $forecast = []; $seasonal = []; for($i = 1; $i < $cycle+1; $i++) { $seasonal[$i] = $this->data[$i] / $level[0]; } $alpha = 0.00; while ($alpha < 1) { $gamma = 0.00; while($gamma < 1) { $gamma_ = $gamma * (1 - $alpha); $error = []; $tempForecast = []; for($i = 1; $i < $dataLength; $i++) { $hm = (int) floor(($i-1) % $cycle) + 1; $level[$i] = $alpha * (($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) / $seasonal[$i]) + (1 - $alpha) * $level[$i-1]; $seasonal[$i+$cycle] = $gamma_*(($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) / $level[$i-1]) + (1 - $gamma_) * $seasonal[$i]; $tempForecast[$i] = $level[$i] + $seasonal[$i+$hm]; $error[] = $i < $dataLength - $future ? $this->data[$i] - $tempForecast[$i] : 0; } $tempRMSE = Error::getRootMeanSquaredError($error); if ($tempRMSE < $this->rmse) { $this->rmse = $tempRMSE; $forecast = $tempForecast; } $gamma += 0.01; } $alpha += 0.01; } $this->errors = $error; $this->mse = Error::getMeanSquaredError($error); $this->mae = Error::getMeanAbsoulteError($error); $this->sse = Error::getSumSquaredError($error); return $forecast; } public function getAdditiveNone(int $future, float $damping) : array { $level = [$this->data[0]]; $trend = [$this->data[1] - $this->data[0]]; $dataLength = count($this->data) + $future; $forecast = []; $alpha = 0.00; while ($alpha < 1) { $beta = 0.00; while($beta < 1) { $error = []; $tempForecast = []; for($i = 1; $i < $dataLength; $i++) { $level[$i] = $alpha * ($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) + (1 - $alpha) * ($level[$i-1] + $damping * $trend[$i-1]); $trend[$i] = $beta * ($level[$i] - $level[$i-1]) + (1 - $beta) * $damping * $trend[$i-1]; $tempForecast[$i] = $level[$i] + $this->dampingSum($damping, $i) * $trend[$i]; $error[] = $i < $dataLength - $future ? $this->data[$i] - $tempForecast[$i] : 0; } $tempRMSE = Error::getRootMeanSquaredError($error); if ($tempRMSE < $this->rmse) { $this->rmse = $tempRMSE; $forecast = $tempForecast; } $beta += 0.01; } $alpha += 0.01; } $this->errors = $error; $this->mse = Error::getMeanSquaredError($error); $this->mae = Error::getMeanAbsoulteError($error); $this->sse = Error::getSumSquaredError($error); return $forecast; } public function getAdditiveAdditive(int $future, int $cycle, float $damping) : array { $level = [1 / $cycle * array_sum(array_slice($this->data, 0, $cycle))]; $trend = [1 / $cycle]; $dataLength = count($this->data) + $future; $forecast = []; $seasonal = []; $sum = 0; for($i = 1; $i < $cycle+1; $i++) { $sum += ($this->data[$cycle] - $this->data[$i]) / $cycle; } $trend[0] *= $sum; for($i = 1; $i < $cycle+1; $i++) { $seasonal[$i] = $this->data[$i-1] - $level[0]; } $alpha = 0.00; while ($alpha < 1) { $beta = 0.00; while($beta < 1) { $gamma = 0.00; while($gamma < 1) { $gamma_ = $gamma * (1 - $alpha); $error = []; $tempForecast = []; for($i = 1; $i < $dataLength; $i++) { $hm = (int) floor(($i-1) % $cycle) + 1; $level[$i] = $alpha * (($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) - $seasonal[$i]) + (1 - $alpha) * ($level[$i-1] + $damping * $trend[$i-1]); $trend[$i] = $beta * ($level[$i] - $level[$i-1]) + (1 - $beta) * $damping * $trend[$i-1]; $seasonal[$i+$cycle] = $gamma_*(($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) - $level[$i-1]) + (1 - $gamma_) * $seasonal[$i]; $tempForecast[$i] = $level[$i] + $this->dampingSum($damping, $i) * $trend[$i] + $seasonal[$i+$hm]; $error[] = $i < $dataLength - $future ? $this->data[$i] - $tempForecast[$i] : 0; } $tempRMSE = Error::getRootMeanSquaredError($error); if ($tempRMSE < $this->rmse) { $this->rmse = $tempRMSE; $forecast = $tempForecast; } $gamma += 0.01; } $beta += 0.01; } $alpha += 0.01; } $this->errors = $error; $this->mse = Error::getMeanSquaredError($error); $this->mae = Error::getMeanAbsoulteError($error); $this->sse = Error::getSumSquaredError($error); return $forecast; } public function getAdditiveMultiplicative(int $future, int $cycle, float $damping) : array { $level = [1 / $cycle * array_sum(array_slice($this->data, 0, $cycle))]; $trend = [1 / $cycle]; $dataLength = count($this->data) + $future; $forecast = []; $seasonal = []; $gamma_ = $gamma * (1 - $alpha); $sum = 0; for($i = 1; $i < $cycle+1; $i++) { $sum += ($this->data[$cycle] - $this->data[$i]) / $cycle; } $trend[0] *= $sum; for($i = 1; $i < $cycle+1; $i++) { $seasonal[$i] = $this->data[$i] / $level[0]; } $alpha = 0.00; while ($alpha < 1) { $beta = 0.00; while($beta < 1) { $gamma = 0.00; while($gamma < 1) { $gamma_ = $gamma * (1 - $alpha); $error = []; $tempForecast = []; for($i = 1; $i < $dataLength; $i++) { $hm = (int) floor(($i-1) % $cycle) + 1; $level[$i] = $alpha * (($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) / $seasonal[$i]) + (1 - $alpha) * ($level[$i-1] + $damping * $trend[$i-1]); $trend[$i] = $beta * ($level[$i] - $level[$i-1]) + (1 - $beta) * $damping * $trend[$i-1]; $seasonal[$i+$cycle] = $gamma_*($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) / ($level[$i-1] + $damping * $trend[$i-1]) + (1 - $gamma_) * $seasonal[$i]; $tempForecast[] = ($level[$i] + $this->dampingSum($damping, $i) * $trend[$i-1]) * $seasonal[$i+$hm]; $error[] = $i < $dataLength - $future ? $this->data[$i] - $tempForecast[$i] : 0; } $tempRMSE = Error::getRootMeanSquaredError($error); if ($tempRMSE < $this->rmse) { $this->rmse = $tempRMSE; $forecast = $tempForecast; } $gamma += 0.01; } $beta += 0.01; } $alpha += 0.01; } $this->errors = $error; $this->mse = Error::getMeanSquaredError($error); $this->mae = Error::getMeanAbsoulteError($error); $this->sse = Error::getSumSquaredError($error); return $forecast; } public function getMultiplicativeNone(int $future, float $damping) : array { $level = [$this->data[0]]; $trend = [$this->data[1] / $this->data[0]]; $dataLength = count($this->data) + $future; $forecast = []; $alpha = 0.00; while ($alpha < 1) { $beta = 0.00; while($beta < 1) { $error = []; $tempForecast = []; for($i = 1; $i < $dataLength; $i++) { $level[$i] = $alpha * ($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) + (1 - $alpha) * $level[$i-1] * pow($trend[$i-1], $damping); $trend[$i] = $beta * ($level[$i] / $level[$i-1]) + (1 - $beta) * pow($trend[$i-1], $damping); $tempForecast[$i] = $level[$i] * pow($trend[$i], $this->dampingSum($damping, $i)); $error[] = $i < $dataLength - $future ? $this->data[$i] - $tempForecast[$i] : 0; } $tempRMSE = Error::getRootMeanSquaredError($error); if ($tempRMSE < $this->rmse) { $this->rmse = $tempRMSE; $forecast = $tempForecast; } $beta += 0.01; } $alpha += 0.01; } $this->errors = $error; $this->mse = Error::getMeanSquaredError($error); $this->mae = Error::getMeanAbsoulteError($error); $this->sse = Error::getSumSquaredError($error); return $forecast; } public function getMultiplicativeAdditive(int $future, int $cycle, float $damping) : array { $level = [$this->data[0]]; $trend = [1 / $cycle]; $dataLength = count($this->data) + $future; $forecast = []; $seasonal = []; $sum = 0; for($i = 1; $i < $cycle+1; $i++) { $sum += ($this->data[$cycle] - $this->data[$i]) / $cycle; } $trend[0] *= $sum; for($i = 1; $i < $cycle+1; $i++) { $seasonal[$i] = $this->data[$i-1] - $level[0]; } $alpha = 0.00; while ($alpha < 1) { $beta = 0.00; while($beta < 1) { $gamma = 0.00; while($gamma < 1) { $gamma_ = $gamma * (1 - $alpha); $error = []; $tempForecast = []; for($i = 1; $i < $dataLength; $i++) { $hm = (int) floor(($i-1) % $cycle) + 1; $level[$i] = $alpha * (($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) - $seasonal[$i]) + (1 - $alpha) * $level[$i-1] * pow($trend[$i-1], $damping); $trend[$i] = $beta * ($level[$i] / $level[$i-1]) + (1 - $beta) * pow($trend[$i-1], $damping); $seasonal[$i+$cycle] = $gamma_*(($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) - $level[$i-1] * pow($trend[$i-1], $damping)) + (1 - $gamma_) * $seasonal[$i]; $tempForecast[$i] = $level[$i] * pow($trend[$i], $this->dampingSum($damping, $i)) + $seasonal[$i+$hm]; $error[] = $i < $dataLength - $future ? $this->data[$i] - $tempForecast[$i] : 0; } $tempRMSE = Error::getRootMeanSquaredError($error); if ($tempRMSE < $this->rmse) { $this->rmse = $tempRMSE; $forecast = $tempForecast; } $gamma += 0.01; } $beta += 0.01; } $alpha += 0.01; } $this->errors = $error; $this->mse = Error::getMeanSquaredError($error); $this->mae = Error::getMeanAbsoulteError($error); $this->sse = Error::getSumSquaredError($error); return $forecast; } public function getMultiplicativeMultiplicative(int $future, int $cycle, float $damping) : array { $level = [$this->data[0]]; $trend = [1 / $cycle]; $dataLength = count($this->data) + $future; $forecast = []; $seasonal = []; $sum = 0; for($i = 1; $i < $cycle+1; $i++) { $sum += ($this->data[$cycle] - $this->data[$i]) / $cycle; } $trend[0] *= $sum; for($i = 1; $i < $cycle+1; $i++) { $seasonal[$i] = $this->data[$i] / $level[0]; } $alpha = 0.00; while ($alpha < 1) { $beta = 0.00; while($beta < 1) { $gamma = 0.00; while($gamma < 1) { $gamma_ = $gamma * (1 - $alpha); $error = []; $tempForecast = []; for($i = 1; $i < $dataLength; $i++) { $hm = (int) floor(($i-1) % $cycle) + 1; $level[$i] = $alpha * (($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) / $seasonal[$i]) + (1 - $alpha) * $level[$i-1] * pow($trend[$i-1], $damping); $trend[$i] = $beta * ($level[$i] / $level[$i-1]) + (1 - $beta) * pow($trend[$i-1], $damping); $seasonal[$i+$cycle] = $gamma_*($i < $dataLength - $future ? $this->data[$i-1] : $tempForecast[$i-1]) / ($level[$i-1] * pow($trend[$i-1], $damping)) + (1 - $gamma_) * $seasonal[$i]; $tempForecast[$i] = $level[$i] * pow($trend[$i], $this->dampingSum($damping, $i)) * $seasonal[$i+$hm]; $error[] = $i < $dataLength - $future ? $this->data[$i] - $tempForecast[$i] : 0; } $tempRMSE = Error::getRootMeanSquaredError($error); if ($tempRMSE < $this->rmse) { $this->rmse = $tempRMSE; $forecast = $tempForecast; } $gamma += 0.01; } $beta += 0.01; } $alpha += 0.01; } $this->errors = $error; $this->mse = Error::getMeanSquaredError($error); $this->mae = Error::getMeanAbsoulteError($error); $this->sse = Error::getSumSquaredError($error); return $forecast; } }