$d) { if ($i % $d === 0) { $div = $d; unset($range[$key]); break; } } $fact *= $i / $div; } $fact2 = 1; foreach ($range as $d) { $fact2 *= $d; } return (int) ($fact / $fact2); } /** * Calculate ackermann function. * * @param int $m m * @param int $n n * * @return int * * @since 1.0.0 */ public static function ackermann(int $m, int $n) : int { if ($m === 0) { return $n + 1; } elseif ($n === 0) { return self::ackermann($m - 1, 1); } return self::ackermann($m - 1, self::ackermann($m, $n - 1)); } /** * Calculate inverse modular. * * @param int $a a * @param int $n Modulo * * @return int * * @since 1.0.0 */ public static function invMod(int $a, int $n) : int { if ($n < 0) { $n = -$n; } if ($a < 0) { $a = $n - (-$a % $n); } $t = 0; $nt = 1; $r = $n; $nr = $a % $n; while ($nr != 0) { $quot = (int) ($r / $nr); $tmp = $nt; $nt = $t - $quot * $nt; $t = $tmp; $tmp = $nr; $nr = $r - $quot * $nr; $r = $tmp; } if ($r > 1) { return -1; } if ($t < 0) { $t += $n; } return $t; } /** * Modular implementation for negative values. * * @param int $a a * @param int $b b * * @return int * * @since 1.0.0 */ public static function mod(int $a, int $b) : int { if ($a < 0) { return ($a + $b) % $b; } return $a % $b; } public static function modFloat(float $a, float $b) : float { return $a - ((int) ($a / $b)) * $b; } /** * Check if value is odd. * * @param int $a Value to test * * @return bool * * @since 1.0.0 */ public static function isOdd(int $a) : bool { return (bool) ($a & 1); } /** * Check if value is even. * * @param int $a Value to test * * @return bool * * @since 1.0.0 */ public static function isEven(int $a) : bool { return !((bool) ($a & 1)); } /** * Gets the relative position on a circular construct. * * @example The relative fiscal month (August) in a company where the fiscal year starts in July. * @example 2 = getRelativeDegree(8, 12, 7); * * @param int $value Value to get degree * @param int $length Circle size * @param int $start Start value * * @return int Lowest value is 0 and highest value is length - 1 * * @since 1.0.0 */ public static function getRelativeDegree(int $value, int $length, int $start = 0) : int { return \abs(self::mod($value - $start, $length)); } /** * Error function coefficients for approximation * * @var float[] * @since 1.0.0 */ private const ERF_COF = [ -1.3026537197817094, 6.4196979235649026e-1, 1.9476473204185836e-2,-9.561514786808631e-3,-9.46595344482036e-4, 3.66839497852761e-4,4.2523324806907e-5,-2.0278578112534e-5, -1.624290004647e-6,1.303655835580e-6,1.5626441722e-8,-8.5238095915e-8, 6.529054439e-9,5.059343495e-9,-9.91364156e-10,-2.27365122e-10, 9.6467911e-11, 2.394038e-12,-6.886027e-12,8.94487e-13, 3.13092e-13, -1.12708e-13,3.81e-16,7.106e-15,-1.523e-15,-9.4e-17,1.21e-16,-2.8e-17, ]; /** * Error function * * @param float $x X-Value * * @return float * * @since 1.0.0 */ public static function getErf(float $x) : float { return $x > 0.0 ? 1.0 - self::erfccheb($x) : self::erfccheb(-$x) - 1.0; } /** * Complementary error function * * @param float $x X-Value * * @return float * * @since 1.0.0 */ public static function getErfc(float $x) : float { return $x > 0.0 ? self::erfccheb($x) : 2.0 - self::erfccheb(-$x); } /** * Error function helper function * * @param float $z Z-Value * * @return float * * @throws \InvalidArgumentException * * @since 1.0.0 */ private static function erfccheb(float $z) : float { $d = 0.; $dd = 0.; $ncof = \count(self::ERF_COF); if ($z < 0.) { throw new \InvalidArgumentException("erfccheb requires nonnegative argument"); } $t = 2. / (2. + $z); $ty = 4. * $t - 2.; for ($j = $ncof - 1; $j > 0; --$j) { $tmp = $d; $d = $ty * $d - $dd + self::ERF_COF[$j]; $dd = $tmp; } return $t * \exp(-$z * $z + 0.5 * (self::ERF_COF[0] + $ty * $d) - $dd); } /** * Inverse complementary error function * * @param float $p P-Value * * @return float * * @since 1.0.0 */ public static function getInvErfc(float $p) : float { if ($p >= 2.0) { return -100.; } elseif ($p <= 0.0) { return 100.; } $pp = ($p < 1.0) ? $p : 2. - $p; $t = \sqrt(-2. * \log($pp / 2.)); $x = -0.70711 * ((2.30753 + $t * 0.27061) / (1. + $t * (0.99229 + $t * 0.04481)) - $t); for ($j = 0; $j < 2; ++$j) { $err = self::getErfc($x) - $pp; $x += $err / (1.12837916709551257 * \exp(-($x * $x)) - $x * $err); } return ($p < 1.0? $x : -$x); } /** * Generalized hypergeometric function. * * pFq(a1, ..., ap; b1, ..., bq; z) * * @param array $a Array of values * @param array $b Array of values * @param float $z Z * * @return float * * @since 1.0.0 */ public static function generalizedHypergeometricFunction(array $a, array $b, float $z) : float { $sum = 0.0; $aProd = \array_fill(0, 20, []); $bProd = \array_fill(0, 20, []); for ($n = 0; $n < 20; ++$n) { foreach ($a as $key => $value) { $aProd[$n][$key] = $n === 0 ? 1 : $aProd[$n - 1][$key] * ($value + $n - 1); } foreach ($b as $key => $value) { $bProd[$n][$key] = $n === 0 ? 1 : $bProd[$n - 1][$key] * ($value + $n - 1); } $temp = \array_product($aProd[$n]) / \array_product($bProd[$n]); $sum += $temp * $z ** $n / self::fact($n); } return $sum; } }