$d) { if ($i % $d === 0) { $div = $d; unset($range[$key]); break; } } $fact *= $i / $div; } $fact2 = 1; foreach ($range as $d) { $fact2 *= $d; } return (int) ($fact / $fact2); } /** * Calculate ackermann function. * * @param int $m m * @param int $n n * * @return int * * @since 1.0.0 */ public static function ackermann(int $m, int $n) : int { if ($m === 0) { return $n + 1; } elseif ($n === 0) { return self::ackermann($m - 1, 1); } return self::ackermann($m - 1, self::ackermann($m, $n - 1)); } /** * Calculate inverse modular. * * @param int $a a * @param int $n Modulo * * @return int * * @since 1.0.0 */ public static function invMod(int $a, int $n) : int { if ($n < 0) { $n = -$n; } if ($a < 0) { $a = $n - (-$a % $n); } $t = 0; $nt = 1; $r = $n; $nr = $a % $n; while ($nr != 0) { $quot = (int) ($r / $nr); $tmp = $nt; $nt = $t - $quot * $nt; $t = $tmp; $tmp = $nr; $nr = $r - $quot * $nr; $r = $tmp; } if ($r > 1) { return -1; } if ($t < 0) { $t += $n; } return $t; } /** * Modular implementation for negative values. * * @param int $a a * @param int $b b * * @return int * * @since 1.0.0 */ public static function mod(int $a, int $b) : int { if ($a < 0) { return ($a + $b) % $b; } return $a % $b; } /** * Check if value is odd. * * @param int $a Value to test * * @return bool * * @since 1.0.0 */ public static function isOdd(int $a) : bool { return (bool) ($a & 1); } /** * Check if value is even. * * @param int $a Value to test * * @return bool * * @since 1.0.0 */ public static function isEven(int $a) : bool { return !((bool) ($a & 1)); } /** * Gets the relative position on a circular construct. * * @example The relative fiscal month (August) in a company where the fiscal year starts in July. * @example 2 = getRelativeDegree(8, 12, 7); * * @param int $value Value to get degree * @param int $length Circle size * @param int $start Start value * * @return int Lowest value is 0 and highest value is length - 1 * * @since 1.0.0 */ public static function getRelativeDegree(int $value, int $length, int $start = 0) : int { return \abs(self::mod($value - $start, $length)); } /** * Calculate the value of the error function (gauss error function) * * @param float $value Value * * @return float * * @see Sylvain Chevillard; HAL Id: ensl-00356709 * @see https://hal-ens-lyon.archives-ouvertes.fr/ensl-00356709v3 * * @since 1.0.0 */ public static function getErf(float $value) : float { if (\abs($value) > 2.2) { return 1 - self::getErfc($value); } $valueSquared = $value * $value; $sum = $value; $term = $value; $i = 1; do { $term *= $valueSquared / $i; $sum -= $term / (2 * $i + 1); ++$i; $term *= $valueSquared / $i; $sum += $term / (2 * $i + 1); ++$i; } while ($sum !== 0.0 && \abs($term / $sum) > 0.0000001); return 2 / \sqrt(\M_PI) * $sum; } /** * Calculate the value of the complementary error fanction * * @param float $value Value * * @return float * * @see Sylvain Chevillard; HAL Id: ensl-00356709 * @see https://hal-ens-lyon.archives-ouvertes.fr/ensl-00356709v3 * * @since 1.0.0 */ public static function getErfc(float $value) : float { if (\abs($value) <= 2.2) { return 1 - self::getErf($value); } if ($value < 0.0) { return 2 - self::getErfc(-$value); } $a = $n = 1; $b = $c = $value; $d = ($value * $value) + 0.5; $q1 = $q2 = $b / $d; $t = 0; do { $t = $a * $n + $b * $value; $a = $b; $b = $t; $t = $c * $n + $d * $value; $c = $d; $d = $t; $n += 0.5; $q1 = $q2; $q2 = $b / $d; } while (\abs($q1 - $q2) / $q2 > 0.0000001); return 1 / \sqrt(\M_PI) * \exp(-$value * $value) * $q2; } }