setMatrix([ [3, 1, 1], [1, 2, 2], [1, 2, 2], ]); $eig = new EigenvalueDecomposition($A); self::assertTrue($eig->isSymmetric()); $B = new Matrix(); $B->setMatrix([ [3, 1, 2], [1, 2, 2], [1, 2, 2], ]); $eigB = new EigenvalueDecomposition($B); self::assertFalse($eigB->isSymmetric()); } #[\PHPUnit\Framework\Attributes\Group('framework')] #[\PHPUnit\Framework\Attributes\TestDox('The eigenvalues can be calculated for a symmetric matrix')] public function testSymmetricMatrixEigenvalues() : void { $A = new Matrix(); $A->setMatrix([ [3, 1, 1], [1, 2, 2], [1, 2, 2], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([0, 2, 5], $eig->getRealEigenvalues()->toArray(), 0.1); self::assertEqualsWithDelta([0, 0, 0], $eig->getImagEigenvalues()->toArray(), 0.1); } #[\PHPUnit\Framework\Attributes\Group('framework')] #[\PHPUnit\Framework\Attributes\TestDox('The V matrix of the decomposition can be calculated for a symmetric matrix')] public function testSymmetricMatrixV() : void { $A = new Matrix(); $A->setMatrix([ [3, 1, 1], [1, 2, 2], [1, 2, 2], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([ [0, 2 / \sqrt(6), 1 / \sqrt(3)], [1 / \sqrt(2), -1 / \sqrt(6), 1 / \sqrt(3)], [-1 / \sqrt(2), -1 / \sqrt(6), 1 / \sqrt(3)], ], $eig->getV()->toArray(), 0.2); } #[\PHPUnit\Framework\Attributes\Group('framework')] #[\PHPUnit\Framework\Attributes\TestDox('The D matrix of the decomposition can be calculated for a symmetric matrix')] public function testSymmetricMatrixD() : void { $A = new Matrix(); $A->setMatrix([ [3, 1, 1], [1, 2, 2], [1, 2, 2], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([ [0, 0, 0], [0, 2, 0], [0, 0, 5], ], $eig->getD()->toArray(), 0.2); } #[\PHPUnit\Framework\Attributes\Group('framework')] #[\PHPUnit\Framework\Attributes\TestDox('The eigenvalues can be calculated for a none-symmetric matrix')] public function testNonSymmetricMatrixEigenvalues() : void { $A = new Matrix(); $A->setMatrix([ [-2, -4, 2], [-2, 1, 2], [4, 2, 5], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([-5, 3, 6], $eig->getRealEigenvalues()->toArray(), 0.1); self::assertEqualsWithDelta([0, 0, 0], $eig->getImagEigenvalues()->toArray(), 0.1); } /* Testing for this makes little sense, since this can change depending on the algorithm, precision etc. It's much more important to check the identity A = VDV' which is done in the test "testCompositeNonSymmetric" public function testNonSymmetricMatrixV() : void { $A = new Matrix(); $A->setMatrix([ [-2, -4, 2], [-2, 1, 2], [4, 2, 5], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([ [-\sqrt(2 / 3), \sqrt(2 / 7), -1 / \sqrt(293)], [-1 / \sqrt(6), -3 / \sqrt(14), -6 / \sqrt(293)], [1 / \sqrt(6), -1 / \sqrt(14), -16 / \sqrt(293)], ], $eig->getV()->toArray(), 0.2); } */ #[\PHPUnit\Framework\Attributes\Group('framework')] #[\PHPUnit\Framework\Attributes\TestDox('The D matrix of the decomposition can be calculated for a none-symmetric matrix')] public function testNonSymmetricMatrixD() : void { $A = new Matrix(); $A->setMatrix([ [-2, -4, 2], [-2, 1, 2], [4, 2, 5], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([ [-5, 0, 0], [0, 3, 0], [0, 0, 6], ], $eig->getD()->toArray(), 0.2); } #[\PHPUnit\Framework\Attributes\Group('framework')] #[\PHPUnit\Framework\Attributes\TestDox('The decomposition can be created and the original matrix can be computed for a symmetric matrix')] public function testCompositeSymmetric() : void { $A = new Matrix(); $A->setMatrix([ [3, 1, 1], [1, 2, 2], [1, 2, 2], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta( $A->toArray(), $eig->getV() ->mult($eig->getD()) ->mult($eig->getV()->transpose()) ->toArray() , 0.2); } #[\PHPUnit\Framework\Attributes\Group('framework')] #[\PHPUnit\Framework\Attributes\TestDox('The decomposition can be created and the original matrix can be computed for a none-symmetric matrix')] public function testCompositeNonSymmetric() : void { $A = new Matrix(); $A->setMatrix([ [-2, -4, 2], [-2, 1, 2], [4, 2, 5], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta( $A->toArray(), $eig->getV() ->mult($eig->getD()) ->mult($eig->getV()->inverse()) ->toArray(), 0.2 ); } #[\PHPUnit\Framework\Attributes\Group('framework')] public function testComplexEigenvalueDecomposition() : void { $A = new Matrix(); $A->setMatrix([ [3, -2], [4, -1], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([ [1, 2], [-2, 1], ], $eig->getD()->toArray(), 0.1); self::assertEqualsWithDelta([1, 1], $eig->getRealEigenvalues()->toArray(), 0.1); self::assertEqualsWithDelta([2, -2], $eig->getImagEigenvalues()->toArray(), 0.1); } #[\PHPUnit\Framework\Attributes\Group('framework')] public function testComplexDivision() : void { $A = new Matrix(); $A->setMatrix([ [-2, -4, 2], [3, 1, -4], [4, 5, 5], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([ [-0.3569, 4.49865, 0.0], [-4.49865, -0.3569, 0], [0.0, 0.0, 4.7139], ], $eig->getD()->toArray(), 0.1); self::assertEqualsWithDelta([-0.35695, -0.35695, 4.7139], $eig->getRealEigenvalues()->toArray(), 0.1); self::assertEqualsWithDelta([4.49865, -4.49865, 0.0], $eig->getImagEigenvalues()->toArray(), 0.1); } #[\PHPUnit\Framework\Attributes\Group('framework')] public function testComplexDivision2() : void { $A = new Matrix(); $A->setMatrix([ [-2, 3, 2], [-4, 1, -4], [4, 5, 5], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([ [-2.5510, 0.0, 0.0], [0.0, 3.27552, 4.79404], [0.0, -4.7940, 3.27552], ], $eig->getD()->toArray(), 0.1); self::assertEqualsWithDelta([-2.5510, 3.27552, 3.27552], $eig->getRealEigenvalues()->toArray(), 0.1); self::assertEqualsWithDelta([0.0, 4.7940, -4.7940], $eig->getImagEigenvalues()->toArray(), 0.1); } #[\PHPUnit\Framework\Attributes\Group('framework')] public function testComplexDivision3() : void { $A = new Matrix(); $A->setMatrix([ [9, 4, 5, 1], [-1, 15, -2, 13], [-14, 7, 15, -13], [13, -16, -2, 19], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([ [17.7766, 14.8641, 0.0, 0.0], [-14.8641, 17.7766, 0.0, 0.0], [0.0, 0.0, 11.22336, 5.6595], [0.0, 0.0, -5.6595, 11.22336], ], $eig->getD()->toArray(), 0.1); self::assertEqualsWithDelta([17.7766, 17.7766, 11.2233, 11.2233], $eig->getRealEigenvalues()->toArray(), 0.1); self::assertEqualsWithDelta([14.8641, -14.8641, 5.6595, -5.6595], $eig->getImagEigenvalues()->toArray(), 0.1); } #[\PHPUnit\Framework\Attributes\Group('framework')] public function testComplexDivision4() : void { $A = new Matrix(); $A->setMatrix([ [5, 14, 5, -6], [13, 12, -4, -3], [13, 10, 8, 17], [5, -6, 3, 16], ]); $eig = new EigenvalueDecomposition($A); self::assertEqualsWithDelta([ [22.6519, 3.96406, 0.0, 0.0], [-3.96406, 22.6519, 0.0, 0.0], [0.0, 0.0, -2.1519, 3.39498], [0.0, 0.0, -3.39498, -2.1519], ], $eig->getD()->toArray(), 0.1); self::assertEqualsWithDelta([22.6519, 22.6519, -2.1519, -2.1519], $eig->getRealEigenvalues()->toArray(), 0.1); self::assertEqualsWithDelta([3.96406, -3.96406, 3.39498, -3.39498], $eig->getImagEigenvalues()->toArray(), 0.1); } } /* Test case finder $c = 0; try { do { $array = []; for ($i = 0; $i < 4; ++$i) { $array[] = []; for ($j = 0; $j < 4; ++$j) { $div = \mt_rand(-20, 20); $array[$i][] = \mt_rand(-20, 20); } } $A = new Matrix(); $A->setMatrix($array); $eig = new EigenvalueDecomposition($A); ++$c; } while (true); } catch (\Throwable $_) { var_dump($c); var_dump($array); } */