cOMS/Image/BillDetection.h

186 lines
6.6 KiB
C++

/**
* Karaka
*
* @package Image
* @copyright Dennis Eichhorn
* @license OMS License 1.0
* @version 1.0.0
* @link https://karaka.app
*/
#ifndef IMAGE_BILL_DETECTION_H
#define IMAGE_BILL_DETECTION_H
#include <stdio.h>
#include <math.h>
#include <opencv2/opencv.hpp>
#include <vector>
#include "../Utils/MathUtils.h"
namespace Image {
class BillDetection {
private:
static
double angle(cv::Point pt1, cv::Point pt2, cv::Point pt0)
{
double dx1 = pt1.x - pt0.x;
double dy1 = pt1.y - pt0.y;
double dx2 = pt2.x - pt0.x;
double dy2 = pt2.y - pt0.y;
return (dx1 * dx2 + dy1 * dy2) / sqrt((dx1 * dx1 + dy1 * dy1) * (dx2 * dx2 + dy2 * dy2) + 1e-10);
}
public:
static
cv::Mat highlightBill(cv::Mat in)
{
const int MORPH = 9;
const int CANNY = 84;
const int HOUGH = 25;
cv::Mat grey;
cv::cvtColor(in, grey, cv::COLOR_BGR2GRAY);
cv::Size ksize = cv::Size(3, 3);
cv::GaussianBlur(grey, grey, ksize, 0);
ksize = cv::Size(MORPH, MORPH);
cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, ksize);
cv::Mat dilated;
cv::dilate(grey, dilated, kernel);
cv::Mat edges;
cv::Canny(dilated, edges, 0, CANNY, 3);
std::vector<cv::Vec4i> lines;
cv::HoughLinesP(edges, lines, 1.0, M_PI / 180, HOUGH);
for (int i = 0; i < lines.size(); ++i) {
cv::Point p1 = cv::Point(lines[i][0], lines[i][1]);
cv::Point p2 = cv::Point(lines[i][2], lines[i][3]);
cv::Scalar rgb = cv::Scalar(255, 0, 0);
cv::line(edges, p1, p2, rgb, 2, 8);
}
std::vector<std::vector<cv::Point>> contours;
cv::findContours(edges, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_TC89_KCOS);
// filter lines
std::vector<std::vector<cv::Point>>::iterator it;
int i = 0;
for (it = contours.begin(); it != contours.end(); ++it, ++i) {
if (cv::arcLength(*it, false) < 100) {
contours.erase(contours.begin() + i);
}
}
for (it = contours.begin(); it != contours.end(); ++it, ++i) {
if (cv::contourArea(*it) < 10000) {
contours.erase(contours.begin() + i);
}
}
// create polygons
std::vector<std::vector<cv::Point>> rect;
for (int i = 0; contours.size(); ++i) {
cv::approxPolyDP(contours[i], rect, 40, true);
}
cv::Mat out;
cv::imshow("in", in);
cv::imshow("out", dilated);
cv::imshow("out", edges);
cv::imshow("out", out);
cv::waitKey(0);
return out;
}
static
std::vector<std::vector<cv::Point>> findSquares(cv::Mat in)
{
cv::Mat blurred(in);
cv::medianBlur(in, blurred, 9);
cv::Mat gray0(blurred.size(), CV_8U), gray;
std::vector<std::vector<cv::Point>> contours;
std::vector<std::vector<cv::Point>> squares;
// find squares in every color plane of the image
for (int c = 0; c < 3; c++) {
int ch[] = {c, 0};
cv::mixChannels(&blurred, 1, &gray0, 1, ch, 1);
// try several threshold levels
const int threshold_level = 2;
for (int l = 0; l < threshold_level; ++l) {
// Canny helps to catch squares with gradient shading
if (l == 0) {
cv::Canny(gray0, gray, 10, 20, 3);
// Dilate helps to remove potential holes between edge segments
cv::dilate(gray, gray, cv::Mat(), cv::Point(-1, -1));
} else {
gray = gray0 >= (l + 1) * 255 / threshold_level;
}
cv::findContours(gray, contours, cv::RETR_LIST, cv::CHAIN_APPROX_SIMPLE);
// Test contours
std::vector<cv::Point> approx;
for (size_t i = 0; i < contours.size(); ++i) {
cv::approxPolyDP(cv::Mat(contours[i]), approx, cv::arcLength(cv::Mat(contours[i]), true)*0.02, true);
// contour orientation
if (approx.size() == 4 &&
fabs(cv::contourArea(cv::Mat(approx))) > 1 &&
cv::isContourConvex(cv::Mat(approx))
) {
double maxCosine = 0;
for (int j = 2; j < 5; ++j) {
double cosine = fabs(angle(approx[j % 4], approx[j - 2], approx[j - 1]));
maxCosine = max(maxCosine, cosine);
}
if (maxCosine < 0.3) {
squares.push_back(approx);
}
}
}
}
}
return squares;
}
static
cv::Mat debugSquares( std::vector<std::vector<cv::Point>> squares, cv::Mat in)
{
for (int i = 0; i <squares.size(); ++i) {
cv::drawContours(in, squares, i, cv::Scalar(255,0,0), 1, 8, std::vector<cv::Vec4i>(), 0, cv::Point());
cv::Rect rect = boundingRect(cv::Mat(squares[i]));
cv::rectangle(in, rect.tl(), rect.br(), cv::Scalar(0,255,0), 2, 8, 0);
cv::RotatedRect minRect = minAreaRect(cv::Mat(squares[i]));
cv::Point2f rect_points[4];
minRect.points(rect_points);
for ( int j = 0; j < 4; j++ ) {
cv::line(in, rect_points[j], rect_points[(j + 1) % 4], cv::Scalar(0,0,255), 1, 8);
}
}
return in;
}
};
}
#endif