cOMS/camera/Camera.h

309 lines
9.8 KiB
C

/**
* Jingga
*
* @copyright Jingga
* @license OMS License 2.0
* @version 1.0.0
* @link https://jingga.app
*/
#ifndef TOS_CAMERA_H
#define TOS_CAMERA_H
#include "../stdlib/Types.h"
#include "../math/matrix/MatrixFloat32.h"
#include "CameraMovement.h"
#define CAMERA_MAX_INPUTS 4
// @todo Please check out if we can switch to quaternions. We tried but failed.
// The functions with a 2 at the end are our current backup solution which shouldn't be used (probably)
struct Camera {
v3_f32 location;
v4_f32 orientation;
v3_f32 front;
v3_f32 right;
v3_f32 up;
v3_f32 world_up;
float speed;
float sensitivity;
float zoom;
float fov;
float znear;
float zfar;
float aspect;
};
void
camera_update_vectors(Camera* camera)
{
camera->front.x = cosf(OMS_DEG2RAD(camera->orientation.x)) * cosf(OMS_DEG2RAD(camera->orientation.y));
camera->front.y = sinf(OMS_DEG2RAD(camera->orientation.x));
camera->front.z = cosf(OMS_DEG2RAD(camera->orientation.x)) * sinf(OMS_DEG2RAD(camera->orientation.y));
vec3_normalize_f32(&camera->front);
vec3_cross(&camera->right, &camera->front, &camera->world_up);
vec3_normalize_f32(&camera->right);
vec3_cross(&camera->up, &camera->right, &camera->front);
vec3_normalize_f32(&camera->up);
}
void camera_rotate(Camera* camera, float dx, float dy, float dt)
{
camera->orientation.x += dy * camera->sensitivity;
camera->orientation.y -= dx * camera->sensitivity;
if (true) {
if (camera->orientation.x > 89.0f) {
camera->orientation.x = 89.0f;
} else if (camera->orientation.x < -89.0f) {
camera->orientation.x = -89.0f;
}
if (camera->orientation.y > 360.0f) {
camera->orientation.y -= 360.0f;
} else if (camera->orientation.y < -360.0f) {
camera->orientation.y += 360.0f;
}
}
camera_update_vectors(camera);
}
// you can have up to 4 camera movement inputs at the same time
void camera_movement(Camera* camera, CameraMovement* movement, float dt, bool relative_to_world = true)
{
f32 velocity = camera->speed * dt;
if (relative_to_world) {
for (int i = 0; i < CAMERA_MAX_INPUTS; i++) {
switch(movement[i]) {
case CAMERA_MOVEMENT_FORWARD: {
camera->location.z += velocity;
} break;
case CAMERA_MOVEMENT_BACK: {
camera->location.z -= velocity;
} break;
case CAMERA_MOVEMENT_LEFT: {
camera->location.x -= velocity;
} break;
case CAMERA_MOVEMENT_RIGHT: {
camera->location.x += velocity;
} break;
case CAMERA_MOVEMENT_UP: {
camera->location.y += velocity;
} break;
case CAMERA_MOVEMENT_DOWN: {
camera->location.y -= velocity;
} break;
case CAMERA_MOVEMENT_PITCH_UP: {
camera->orientation.x += velocity;
} break;
case CAMERA_MOVEMENT_PITCH_DOWN: {
camera->orientation.x -= velocity;
} break;
case CAMERA_MOVEMENT_ROLL_LEFT: {
camera->orientation.z += velocity;
} break;
case CAMERA_MOVEMENT_ROLL_RIGHT: {
camera->orientation.z -= velocity;
} break;
case CAMERA_MOVEMENT_YAW_LEFT: {
camera->orientation.y += velocity;
} break;
case CAMERA_MOVEMENT_YAW_RIGHT: {
camera->orientation.y -= velocity;
} break;
case CAMERA_MOVEMENT_ZOOM_IN: {
camera->zoom += velocity;
} break;
case CAMERA_MOVEMENT_ZOOM_OUT: {
camera->zoom -= velocity;
} break;
default: {}
}
}
} else {
v3_f32 forward = camera->front;
v3_f32 right;
vec3_cross(&right, &camera->world_up, &forward);
vec3_normalize_f32(&right);
v3_f32 up;
vec3_cross(&up, &right, &forward);
vec3_normalize_f32(&up);
for (int i = 0; i < CAMERA_MAX_INPUTS; i++) {
switch(movement[i]) {
case CAMERA_MOVEMENT_FORWARD: {
camera->location.x += forward.x * velocity;
camera->location.y += forward.y * velocity;
camera->location.z += forward.z * velocity;
} break;
case CAMERA_MOVEMENT_BACK: {
camera->location.x -= forward.x * velocity;
camera->location.y -= forward.y * velocity;
camera->location.z -= forward.z * velocity;
} break;
case CAMERA_MOVEMENT_LEFT: {
camera->location.x -= right.x * velocity;
camera->location.y -= right.y * velocity;
camera->location.z -= right.z * velocity;
} break;
case CAMERA_MOVEMENT_RIGHT: {
camera->location.x += right.x * velocity;
camera->location.y += right.y * velocity;
camera->location.z += right.z * velocity;
} break;
case CAMERA_MOVEMENT_UP: {
camera->location.x += up.x * velocity;
camera->location.y += up.y * velocity;
camera->location.z += up.z * velocity;
} break;
case CAMERA_MOVEMENT_DOWN: {
camera->location.x -= up.x * velocity;
camera->location.y -= up.y * velocity;
camera->location.z -= up.z * velocity;
} break;
case CAMERA_MOVEMENT_PITCH_UP: {
camera->orientation.x += velocity;
} break;
case CAMERA_MOVEMENT_PITCH_DOWN: {
camera->orientation.x -= velocity;
} break;
case CAMERA_MOVEMENT_ROLL_LEFT: {
camera->orientation.z += velocity;
} break;
case CAMERA_MOVEMENT_ROLL_RIGHT: {
camera->orientation.z -= velocity;
} break;
case CAMERA_MOVEMENT_YAW_LEFT: {
camera->orientation.z += velocity;
} break;
case CAMERA_MOVEMENT_YAW_RIGHT: {
camera->orientation.z -= velocity;
} break;
case CAMERA_MOVEMENT_ZOOM_IN: {
camera->zoom += velocity;
} break;
case CAMERA_MOVEMENT_ZOOM_OUT: {
camera->zoom -= velocity;
} break;
default: {}
}
}
}
}
inline
void camera_projection_matrix_lh(const Camera* __restrict camera, float* __restrict projection)
{
mat4_identity_sparse(projection);
mat4_perspective_sparse_lh(
projection,
camera->fov,
camera->aspect,
camera->znear,
camera->zfar
);
}
inline
void camera_projection_matrix_rh(const Camera* __restrict camera, float* __restrict projection)
{
mat4_identity_sparse(projection);
mat4_perspective_sparse_rh(
projection,
camera->fov,
camera->aspect,
camera->znear,
camera->zfar
);
}
// This is usually not used, since it is included in the view matrix
// expects the identity matrix
inline
void camera_translation_matrix_sparse_rh(const Camera* __restrict camera, float* translation)
{
translation[12] = camera->location.x;
translation[13] = camera->location.y;
translation[14] = camera->location.z;
}
inline
void camera_translation_matrix_sparse_lh(const Camera* __restrict camera, float* translation)
{
translation[3] = camera->location.x;
translation[7] = camera->location.y;
translation[11] = camera->location.z;
}
void
camera_view_matrix_lh(const Camera* __restrict camera, float* __restrict view)
{
v3_f32 zaxis = { camera->front.x, camera->front.y, camera->front.z };
v3_f32 xaxis;
vec3_cross(&xaxis, &camera->world_up, &zaxis);
vec3_normalize_f32(&xaxis);
v3_f32 yaxis;
vec3_cross(&yaxis, &zaxis, &xaxis);
view[0] = xaxis.x;
view[1] = yaxis.x;
view[2] = zaxis.x;
view[3] = 0.0f;
view[4] = xaxis.y;
view[5] = yaxis.y;
view[6] = zaxis.y;
view[7] = 0.0f;
view[8] = xaxis.z;
view[9] = yaxis.z;
view[10] = zaxis.z;
view[11] = 0;
view[12] = -vec3_dot(&xaxis, &camera->location);
view[13] = -vec3_dot(&yaxis, &camera->location);
view[14] = -vec3_dot(&zaxis, &camera->location);
view[15] = 1.0f;
}
void
camera_view_matrix_rh(const Camera* __restrict camera, float* __restrict view)
{
v3_f32 zaxis = { -camera->front.x, -camera->front.y, -camera->front.z };
v3_f32 xaxis;
vec3_cross(&xaxis, &zaxis, &camera->world_up);
vec3_normalize_f32(&xaxis);
v3_f32 yaxis;
vec3_cross(&yaxis, &zaxis, &xaxis);
view[0] = xaxis.x;
view[1] = yaxis.x;
view[2] = zaxis.x;
view[3] = 0.0f;
view[4] = xaxis.y;
view[5] = yaxis.y;
view[6] = zaxis.y;
view[7] = 0.0f;
view[8] = xaxis.z;
view[9] = yaxis.z;
view[10] = zaxis.z;
view[11] = 0;
view[12] = -vec3_dot(&xaxis, &camera->location);
view[13] = -vec3_dot(&yaxis, &camera->location);
view[14] = -vec3_dot(&zaxis, &camera->location);
view[15] = 1.0f;
}
#endif