mirror of
https://github.com/Karaka-Management/cOMS.git
synced 2026-01-10 19:08:39 +00:00
289 lines
5.0 KiB
C
289 lines
5.0 KiB
C
/**
|
|
* Jingga
|
|
*
|
|
* @copyright Jingga
|
|
* @license OMS License 2.0
|
|
* @version 1.0.0
|
|
* @link https://jingga.app
|
|
*/
|
|
#ifndef COMS_STDLIB_SIMD_I32_H
|
|
#define COMS_STDLIB_SIMD_I32_H
|
|
|
|
#include <immintrin.h>
|
|
#include <xmmintrin.h>
|
|
#include <emmintrin.h>
|
|
|
|
#include "../../../stdlib/Types.h"
|
|
|
|
// @todo a lot of sse functions require high level (e.g. sse4.1) this needs to be changed to be more general
|
|
// or better create alternative functions for the available sse version.
|
|
|
|
// @question why are we passing structs by value?
|
|
struct int32_8 {
|
|
union {
|
|
#if ARM
|
|
svint32_t s;
|
|
#else
|
|
__m256i s;
|
|
#endif
|
|
|
|
int32 v[8];
|
|
};
|
|
};
|
|
|
|
inline int32_8 load_int32_8(const int32* mem)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_load_si256((__m256i *) mem);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 init_int32_8(const int32* mem)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_set_epi32(mem[0], mem[1], mem[2], mem[3], mem[4], mem[5], mem[6], mem[7]);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline void unload_int32_8(int32_8 a, int32 *array) { _mm256_store_si256((__m256i *) array, a.s); }
|
|
|
|
inline int32_8 init_zero_int32_8()
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_setzero_si256();
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 init_value_int32_8(int32 value)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_set1_epi32(value);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 init_values_int32_8(
|
|
int32 a, int32 b, int32 c, int32 d,
|
|
int32 e, int32 f, int32 g, int32 h
|
|
)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_set_epi32(a, b, c, d, e, f, g, h);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator+(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_add_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator-(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_sub_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator-(int32_8 a) { return init_zero_int32_8() - a; }
|
|
|
|
inline int32_8 operator*(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_mul_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator^(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_xor_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 &operator-=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a - b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator+=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a + b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator*=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a * b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator^=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a ^ b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 operator<(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_xor_si256(_mm256_cmpgt_epi32(a.s, b.s), _mm256_set1_epi32(-1));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator<=(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_andnot_si256(_mm256_cmpgt_epi32(a.s, b.s), _mm256_set1_epi32(-1));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator>(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_cmpgt_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator>=(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_andnot_si256(_mm256_cmpgt_epi32(b.s, a.s), _mm256_set1_epi32(-1));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator==(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_cmpeq_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator!=(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_mask_blend_epi32(_mm256_cmp_epi32_mask(a.s, b.s, _MM_CMPINT_NE), a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator&(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_and_si256(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator|(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_or_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 &operator&=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a & b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator|=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a | b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 abs(int32_8 a)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_abs_epi32(a.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 simd_min(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_min_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 simd_max(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_max_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 sign(int32_8 a)
|
|
{
|
|
__m256i mask = _mm256_set1_epi32(0x80000000);
|
|
__m256i signBit = _mm256_and_si256(a.s, mask);
|
|
__m256i b = _mm256_set1_epi32(1);
|
|
|
|
int32_8 simd;
|
|
simd.s = _mm256_or_si256(b, signBit);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 clamp(int32_8 min_value, int32_8 a, int32_8 max_value)
|
|
{
|
|
return simd_min(simd_max(a, min_value), max_value);
|
|
}
|
|
|
|
inline int32 which_true(int32_8 a)
|
|
{
|
|
int32 which_true = _mm256_movemask_epi8(a.s);
|
|
|
|
return which_true;
|
|
}
|
|
|
|
inline bool any_true(int32_8 a)
|
|
{
|
|
bool is_any_true = _mm256_movemask_epi8(a.s) > 0;
|
|
|
|
return is_any_true;
|
|
}
|
|
|
|
inline bool all_true(int32_8 a)
|
|
{
|
|
bool is_true = _mm256_movemask_epi8(a.s) == 255;
|
|
|
|
return is_true;
|
|
}
|
|
|
|
inline bool all_false(int32_8 a)
|
|
{
|
|
bool is_false = _mm256_movemask_epi8(a.s) == 0;
|
|
|
|
return is_false;
|
|
}
|
|
|
|
#endif
|