cOMS/image/Qoi.h

206 lines
6.5 KiB
C

/**
* Jingga
*
* @copyright Jingga
* @license OMS License 2.0
* @version 1.0.0
* @link https://jingga.app
*/
#ifndef TOS_IMAGE_QOI_H
#define TOS_IMAGE_QOI_H
#include "../stdlib/Types.h"
#include <string.h>
#include "Image.cpp"
#define QOI_OP_INDEX 0b00000000
#define QOI_OP_DIFF 0b01000000
#define QOI_OP_LUMA 0b10000000
#define QOI_OP_RUN 0b11000000 // @todo There is a HUGE step from here to QOI_OP_RGB this leaves room for more cases or using this data
#define QOI_OP_RGB 0b11111110
#define QOI_OP_RGBA 0b11111111
#define QOI_MASK_2 0b11000000
#define QOI_COLOR_HASH(color) (color.r * 3 + color.g * 5 + color.b * 7 + color.a * 11)
#define QOI_COLOR_HASH_2(color) ((((uint32)(color)) * 0x9E3779B1U) >> 26)
int32 qoi_encode(const Image* image, byte* data)
{
int32 p = image_header_to_data(image, data);
v4_byte index[64];
memset(index, 0, sizeof(index));
v4_byte px_prev = {0, 0, 0, 255};
v4_byte px = px_prev;
int32 channels = (image->image_settings & IMAGE_SETTING_CHANNEL_COUNT);
// Only works with 1 byte channel size -> we don't have to multiply channel count with channel size
int32 px_len = image->width * image->height * channels;
int32 px_end = px_len - channels;
int32 run = 0;
for (int32 px_pos = 0; px_pos < px_len; px_pos += channels) {
// @performance could We just use int32 type cast? The problem would be the last pixel which would be out of bounds by 1 byte
memcpy(&px, &image->pixels[px_pos], channels * sizeof(byte));
if (px.val == px_prev.val) {
++run;
if (run == 62 || px_pos == px_end) {
data[p++] = (byte) (QOI_OP_RUN | (run - 1));
run = 0;
}
} else {
if (run) {
data[p++] = (byte) (QOI_OP_RUN | (run - 1));
run = 0;
}
int32 index_pos = QOI_COLOR_HASH(px) % 64;
//int32 index_pos = QOI_COLOR_HASH_2(px);
if (index[index_pos].val == px.val) {
data[p++] = (byte) (QOI_OP_INDEX | index_pos);
} else {
index[index_pos] = px;
if (px.a == px_prev.a) {
signed char vr = px.r - px_prev.r;
signed char vg = px.g - px_prev.g;
signed char vb = px.b - px_prev.b;
signed char vg_r = vr - vg;
signed char vg_b = vb - vg;
if (vr > -3 && vr < 2
&& vg > -3 && vg < 2
&& vb > -3 && vb < 2
) {
data[p++] = QOI_OP_DIFF | (vr + 2) << 4 | (vg + 2) << 2 | (vb + 2);
} else if (vg_r > -9 && vg_r < 8
&& vg > -33 && vg < 32
&& vg_b > -9 && vg_b < 8
) {
data[p++] = QOI_OP_LUMA | (vg + 32);
data[p++] = (vg_r + 8) << 4 | (vg_b + 8);
} else {
data[p++] = QOI_OP_RGB;
data[p++] = px.r;
data[p++] = px.g;
data[p++] = px.b;
}
} else {
data[p++] = QOI_OP_RGBA;
*((uint32 *) &data[p]) = SWAP_ENDIAN_LITTLE(px.val);
p += 4;
}
}
}
px_prev = px;
}
return p;
}
int32 qoi_decode(const byte* data, Image* image, int32 steps = 8)
{
int32 header_length = image_header_from_data(data, image);
int32 p = header_length;
int32 channels = (image->image_settings & IMAGE_SETTING_CHANNEL_COUNT);
uint32 px_len = image->width * image->height * channels;
v4_byte px = {0, 0, 0, 255};
v4_byte index[64];
memset(index, 0, sizeof(index));
int32 run = 0;
for (uint32 px_pos = 0; px_pos < px_len; px_pos += channels) {
int32 b1 = data[p++];
if (b1 == QOI_OP_RGB) {
px.r = data[p++];
px.g = data[p++];
px.b = data[p++];
} else if (b1 == QOI_OP_RGBA) {
px.val = SWAP_ENDIAN_LITTLE(*((uint32 *) &data[p]));
p += 4;
} else if ((b1 & QOI_MASK_2) == QOI_OP_INDEX) {
px = index[b1];
} else if ((b1 & QOI_MASK_2) == QOI_OP_DIFF) {
px.r += ((b1 >> 4) & 0x03) - 2;
px.g += ((b1 >> 2) & 0x03) - 2;
px.b += ( b1 & 0x03) - 2;
} else if ((b1 & QOI_MASK_2) == QOI_OP_LUMA) {
int32 b2 = data[p++];
byte vg = (b1 & 0x3f) - 32;
px.r += vg - 8 + ((b2 >> 4) & 0x0f);
px.g += vg;
px.b += vg - 8 + (b2 & 0x0f);
} else if ((b1 & QOI_MASK_2) == QOI_OP_RUN) {
run = (b1 & 0x3f);
if (channels == 4) {
uint32 px_little_endian = SWAP_ENDIAN_LITTLE(px.val);
int32 pixel_step_size = steps * 4;
int32 i = 0;
// @performance Implement for ARM
#if ARM
#else
if (steps == 16) {
__m512i simd_value = _mm512_set1_epi32(px_little_endian);
for(; i <= run - steps; i += steps, px_pos += pixel_step_size) {
_mm512_storeu_si512((__m512i *) &image->pixels[px_pos], simd_value);
}
} else if (steps >= 8) {
__m256i simd_value = _mm256_set1_epi32(px_little_endian);
for (; i <= run - steps; i += steps, px_pos += pixel_step_size) {
_mm256_storeu_si256((__m256i *) &image->pixels[px_pos], simd_value);
}
} else if (steps >= 4) {
__m128i simd_value = _mm_set1_epi32(px_little_endian);
for(; i <= run - steps; i += steps, px_pos += pixel_step_size) {
_mm_storeu_si128((__m128i *) &image->pixels[px_pos], simd_value);
}
}
#endif
for (; i < run; ++i) {
*((uint32 *) &image->pixels[px_pos]) = px_little_endian;
px_pos += channels;
}
} else if (channels == 3) {
for (int32 i = 0; i < run; ++i) {
image->pixels[px_pos++] = px.r;
image->pixels[px_pos++] = px.g;
image->pixels[px_pos++] = px.b;
}
} else if (channels == 1) {
memset(&image->pixels[px_pos], px.r, run * sizeof(byte));
px_pos += run;
}
// Correction, since the loop increments by channels count as well
px_pos -= channels;
index[QOI_COLOR_HASH(px) % 64] = px;
//index[QOI_COLOR_HASH_2(px)] = px;
continue;
}
index[QOI_COLOR_HASH(px) % 64] = px;
//index[QOI_COLOR_HASH_2(px)] = px;
memcpy(&image->pixels[px_pos], &px, channels * sizeof(byte));
}
return header_length + px_len;
}
#endif