mirror of
https://github.com/Karaka-Management/cOMS.git
synced 2026-01-26 01:28:40 +00:00
1567 lines
30 KiB
C
1567 lines
30 KiB
C
/**
|
|
* Jingga
|
|
*
|
|
* @copyright Jingga
|
|
* @license OMS License 2.0
|
|
* @version 1.0.0
|
|
* @link https://jingga.app
|
|
*/
|
|
#ifndef TOS_TOS_STDLIB_SIMD_I32_H
|
|
#define TOS_TOS_STDLIB_SIMD_I32_H
|
|
|
|
#include <immintrin.h>
|
|
#include <xmmintrin.h>
|
|
|
|
#include "../Types.h"
|
|
#include "SIMD_F32.h"
|
|
|
|
// @todo a lot of sse functions require high level (e.g. sse4.1) this needs to be changed to be more general
|
|
// or better create alternative functions for the available sse version.
|
|
|
|
struct int32_4 {
|
|
union {
|
|
__m128i s;
|
|
int32 v[4];
|
|
};
|
|
};
|
|
|
|
struct int32_8 {
|
|
union {
|
|
__m256i s;
|
|
int32 v[8];
|
|
};
|
|
};
|
|
|
|
struct int32_16 {
|
|
union {
|
|
__m512i s;
|
|
int32 v[16];
|
|
};
|
|
};
|
|
|
|
inline int32_4 load_int32_4(const int32* mem)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_loadu_epi32(mem);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 init_int32_4(const int32* mem)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_set_epi32(mem[0], mem[1], mem[2], mem[3]);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline void unload_int32_4(int32_4 a, int32 *array) { _mm_store_si128((__m128i *) array, a.s); }
|
|
|
|
inline int32_8 load_int32_8(const int32* mem)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_loadu_epi32(mem);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 init_int32_8(const int32* mem)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_set_epi32(mem[0], mem[1], mem[2], mem[3], mem[4], mem[5], mem[6], mem[7]);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline void unload_int32_8(int32_8 a, int32 *array) { _mm256_store_si256((__m256i *) array, a.s); }
|
|
|
|
inline int32_16 load_int32_16(const int32* mem)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_loadu_epi32(mem);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 init_int32_16(const int32* mem)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_set_epi32(mem[0], mem[1], mem[2], mem[3], mem[4], mem[5], mem[6], mem[7], mem[8], mem[9],
|
|
mem[10], mem[11], mem[12], mem[13], mem[14], mem[15]);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline void unload_int32_16(int32_16 a, int32 *array) { _mm512_store_epi32(array, a.s); }
|
|
|
|
inline int32_4 init_zero_int32_4()
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_setzero_si128();
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 init_zero_int32_8()
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_setzero_si256();
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 init_zero_int32_16()
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_setzero_epi32();
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 init_value_int32_4(int32 value)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_set1_epi32(value);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 init_value_int32_8(int32 value)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_set1_epi32(value);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 init_value_int32_16(int32 value)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_set1_epi32(value);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 init_values_int32_4(int32 a, int32 b, int32 c, int32 d)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_set_epi32(a, b, c, d);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 init_values_int32_8(
|
|
int32 a, int32 b, int32 c, int32 d,
|
|
int32 e, int32 f, int32 g, int32 h
|
|
)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_set_epi32(a, b, c, d, e, f, g, h);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 init_values_int32_16(
|
|
int32 a, int32 b, int32 c, int32 d,
|
|
int32 e, int32 f, int32 g, int32 h,
|
|
int32 i, int32 j, int32 k, int32 l,
|
|
int32 m, int32 n, int32 o, int32 p
|
|
)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_set_epi32(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline
|
|
int32_4 f32_4_to_int32_4(f32_4 a)
|
|
{
|
|
int32_4 result;
|
|
result.s = _mm_cvtps_epi32(a.s);
|
|
|
|
return result;
|
|
}
|
|
|
|
inline
|
|
f32_4 int32_4_to_f32_4(int32_4 a)
|
|
{
|
|
f32_4 result;
|
|
result.s = _mm_cvtepi32_ps(a.s);
|
|
|
|
return result;
|
|
}
|
|
|
|
inline
|
|
int32_8 f32_8_to_int32_8(f32_8 a)
|
|
{
|
|
int32_8 result;
|
|
result.s = _mm256_cvtps_epi32(a.s);
|
|
|
|
return result;
|
|
}
|
|
|
|
inline
|
|
f32_8 int32_8_to_f32_8(int32_8 a)
|
|
{
|
|
f32_8 result;
|
|
result.s = _mm256_cvtepi32_ps(a.s);
|
|
|
|
return result;
|
|
}
|
|
|
|
inline
|
|
int32_16 f32_16_to_int32_16(f32_16 a)
|
|
{
|
|
int32_16 result;
|
|
result.s = _mm512_cvtps_epi32(a.s);
|
|
|
|
return result;
|
|
}
|
|
|
|
inline
|
|
f32_16 int32_16_to_f32_16(int32_16 a)
|
|
{
|
|
f32_16 result;
|
|
result.s = _mm512_cvtepi32_ps(a.s);
|
|
|
|
return result;
|
|
}
|
|
|
|
inline int32_4 operator+(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_add_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator+(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_add_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator+(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_add_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator-(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_sub_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator-(int32_4 a) { return init_zero_int32_4() - a; }
|
|
|
|
inline int32_8 operator-(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_sub_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator-(int32_8 a) { return init_zero_int32_8() - a; }
|
|
|
|
inline int32_16 operator-(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_sub_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator-(int32_16 a) { return init_zero_int32_16() - a; }
|
|
|
|
inline int32_4 operator*(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_mul_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator*(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_mul_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator*(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_mul_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator/(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_div_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator/(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_div_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator/(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_div_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_4 operator/(f32_4 a, int32_4 b)
|
|
{
|
|
f32_4 simd;
|
|
simd.s = _mm_div_ps(a.s, _mm_cvtepi32_ps(b.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_8 operator/(f32_8 a, int32_8 b)
|
|
{
|
|
f32_8 simd;
|
|
simd.s = _mm256_div_ps(a.s, _mm256_cvtepi32_ps(b.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_16 operator/(f32_16 a, int32_16 b)
|
|
{
|
|
f32_16 simd;
|
|
simd.s = _mm512_div_ps(a.s, _mm512_cvtepi32_ps(b.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_4 operator/(int32_4 a, f32_4 b)
|
|
{
|
|
f32_4 simd;
|
|
simd.s = _mm_div_ps(_mm_cvtepi32_ps(a.s), b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_8 operator/(int32_8 a, f32_8 b)
|
|
{
|
|
f32_8 simd;
|
|
simd.s = _mm256_div_ps(_mm256_cvtepi32_ps(a.s), b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_16 operator/(int32_16 a, f32_16 b)
|
|
{
|
|
f32_16 simd;
|
|
simd.s = _mm512_div_ps(_mm512_cvtepi32_ps(a.s), b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator^(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_xor_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator^(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_xor_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator^(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_xor_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 &operator-=(int32_4 &a, int32_4 b)
|
|
{
|
|
a = a - b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator-=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a - b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_16 &operator-=(int32_16 &a, int32_16 b)
|
|
{
|
|
a = a - b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_4 &operator+=(int32_4 &a, int32_4 b)
|
|
{
|
|
a = a + b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator+=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a + b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_16 &operator+=(int32_16 &a, int32_16 b)
|
|
{
|
|
a = a + b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_4 &operator*=(int32_4 &a, int32_4 b)
|
|
{
|
|
a = a * b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator*=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a * b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_16 &operator*=(int32_16 &a, int32_16 b)
|
|
{
|
|
a = a * b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_4 &operator/=(int32_4 &a, int32_4 b)
|
|
{
|
|
a.s = (a / b).s;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator/=(int32_8 &a, int32_8 b)
|
|
{
|
|
a.s = (a / b).s;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_16 &operator/=(int32_16 &a, int32_16 b)
|
|
{
|
|
a.s = (a / b).s;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_4 &operator^=(int32_4 &a, int32_4 b)
|
|
{
|
|
a = a ^ b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator^=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a ^ b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_16 &operator^=(int32_16 &a, int32_16 b)
|
|
{
|
|
a = a ^ b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_4 operator<(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_cmplt_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator<(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_xor_si256(_mm256_cmpgt_epi32(a.s, b.s), _mm256_set1_epi32(-1));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator<(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_mask_blend_epi32(_mm512_cmplt_epi32_mask(a.s, b.s), a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator<=(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_andnot_si128(_mm_cmplt_epi32(b.s, a.s), _mm_set1_epi32(-1));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator<=(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_andnot_si256(_mm256_cmpgt_epi32(a.s, b.s), _mm256_set1_epi32(-1));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator<=(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_mask_blend_epi32(_mm512_knot(_mm512_cmpgt_epi32_mask(b.s, a.s)), b.s, a.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator>(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_cmpgt_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator>(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_cmpgt_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator>(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_mask_blend_epi32(_mm512_cmpgt_epi32_mask(a.s, b.s), a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator>=(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_andnot_si128(_mm_cmplt_epi32(a.s, b.s), _mm_set1_epi32(-1));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator>=(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_andnot_si256(_mm256_cmpgt_epi32(b.s, a.s), _mm256_set1_epi32(-1));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator>=(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_mask_blend_epi32(_mm512_cmpge_epi32_mask(a.s, b.s), a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator==(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_cmpeq_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator==(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_cmpeq_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator==(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_mask_blend_epi32(_mm512_cmpeq_epi32_mask(a.s, b.s), a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator!=(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_andnot_si128(_mm_cmpeq_epi32(a.s, b.s), _mm_set1_epi32(-1));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator!=(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_mask_blend_epi32(_mm256_cmp_epi32_mask(a.s, b.s, _MM_CMPINT_NE), a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator!=(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_mask_blend_epi32(_mm512_cmp_epi32_mask(a.s, b.s, _MM_CMPINT_NE), a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator&(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_and_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator&(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_and_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator&(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_and_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 operator|(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_or_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 operator|(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_or_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 operator|(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_or_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 &operator&=(int32_4 &a, int32_4 b)
|
|
{
|
|
a = a & b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator&=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a & b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_16 &operator&=(int32_16 &a, int32_16 b)
|
|
{
|
|
a = a & b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_4 &operator|=(int32_4 &a, int32_4 b)
|
|
{
|
|
a = a | b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_8 &operator|=(int32_8 &a, int32_8 b)
|
|
{
|
|
a = a | b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_16 &operator|=(int32_16 &a, int32_16 b)
|
|
{
|
|
a = a | b;
|
|
|
|
return a;
|
|
}
|
|
|
|
inline int32_4 abs(int32_4 a)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_abs_epi32(a.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 abs(int32_8 a)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_abs_epi32(a.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 abs(int32_16 a)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_abs_epi64(a.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 simd_min(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_min_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 simd_min(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_min_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 simd_min(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_min_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 simd_max(int32_4 a, int32_4 b)
|
|
{
|
|
int32_4 simd;
|
|
simd.s = _mm_max_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 simd_max(int32_8 a, int32_8 b)
|
|
{
|
|
int32_8 simd;
|
|
simd.s = _mm256_max_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 simd_max(int32_16 a, int32_16 b)
|
|
{
|
|
int32_16 simd;
|
|
simd.s = _mm512_max_epi32(a.s, b.s);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 sign(int32_4 a)
|
|
{
|
|
__m128i mask = _mm_set1_epi32(0x80000000);
|
|
__m128i signBit = _mm_and_epi32(a.s, mask);
|
|
__m128i b = _mm_set1_epi32(1);
|
|
|
|
int32_4 simd;
|
|
simd.s = _mm_or_si128(b, signBit);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_8 sign(int32_8 a)
|
|
{
|
|
__m256i mask = _mm256_set1_epi32(0x80000000);
|
|
__m256i signBit = _mm256_and_epi32(a.s, mask);
|
|
__m256i b = _mm256_set1_epi32(1);
|
|
|
|
int32_8 simd;
|
|
simd.s = _mm256_or_si256(b, signBit);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_16 sign(int32_16 a)
|
|
{
|
|
__m512i mask = _mm512_set1_epi32(0x80000000);
|
|
__m512i signBit = _mm512_and_epi32(a.s, mask);
|
|
__m512i b = _mm512_set1_epi32(1);
|
|
int32_16 simd;
|
|
|
|
simd.s = _mm512_or_si512(b, signBit);
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_4 sqrt(int32_4 a)
|
|
{
|
|
f32_4 simd;
|
|
simd.s = _mm_sqrt_ps(_mm_cvtepi32_ps(a.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_8 sqrt(int32_8 a)
|
|
{
|
|
f32_8 simd;
|
|
simd.s = _mm256_sqrt_ps(_mm256_cvtepi32_ps(a.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_16 sqrt(int32_16 a)
|
|
{
|
|
f32_16 simd;
|
|
simd.s = _mm512_sqrt_ps(_mm512_cvtepi32_ps(a.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_4 sqrt_inv_approx(int32_4 a)
|
|
{
|
|
f32_4 simd;
|
|
simd.s = _mm_rsqrt_ps(_mm_cvtepi32_ps(a.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_8 sqrt_inv_approx(int32_8 a)
|
|
{
|
|
f32_8 simd;
|
|
simd.s = _mm256_rsqrt_ps(_mm256_cvtepi32_ps(a.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_16 sqrt_inv_approx(int32_16 a)
|
|
{
|
|
f32_16 simd;
|
|
simd.s = _mm512_rsqrt14_ps(_mm512_cvtepi32_ps(a.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_4 one_over_approx(int32_4 a)
|
|
{
|
|
f32_4 simd;
|
|
simd.s = _mm_rcp_ps(_mm_cvtepi32_ps(a.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_8 one_over_approx(int32_8 a)
|
|
{
|
|
f32_8 simd;
|
|
simd.s = _mm256_rcp_ps(_mm256_cvtepi32_ps(a.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline f32_16 one_over_approx(int32_16 a)
|
|
{
|
|
f32_16 simd;
|
|
simd.s = _mm512_rcp14_ps(_mm512_cvtepi32_ps(a.s));
|
|
|
|
return simd;
|
|
}
|
|
|
|
inline int32_4 clamp(int32_4 min_value, int32_4 a, int32_4 max_value)
|
|
{
|
|
return simd_min(simd_max(a, min_value), max_value);
|
|
}
|
|
|
|
inline int32_8 clamp(int32_8 min_value, int32_8 a, int32_8 max_value)
|
|
{
|
|
return simd_min(simd_max(a, min_value), max_value);
|
|
}
|
|
|
|
inline int32_16 clamp(int32_16 min_value, int32_16 a, int32_16 max_value)
|
|
{
|
|
return simd_min(simd_max(a, min_value), max_value);
|
|
}
|
|
|
|
inline int32 which_true(int32_4 a)
|
|
{
|
|
int32 which_true = _mm_movemask_epi8(a.s);
|
|
|
|
return which_true;
|
|
}
|
|
|
|
inline int32 which_true(int32_8 a)
|
|
{
|
|
int32 which_true = _mm256_movemask_epi8(a.s);
|
|
|
|
return which_true;
|
|
}
|
|
|
|
inline int32 which_true(int32_16 a)
|
|
{
|
|
int32 which_true = _mm512_movepi32_mask(a.s);
|
|
|
|
return which_true;
|
|
}
|
|
|
|
inline bool any_true(int32_4 a)
|
|
{
|
|
bool is_any_true = _mm_movemask_epi8(a.s) > 0;
|
|
|
|
return is_any_true;
|
|
}
|
|
|
|
inline bool any_true(int32_8 a)
|
|
{
|
|
bool is_any_true = _mm256_movemask_epi8(a.s) > 0;
|
|
|
|
return is_any_true;
|
|
}
|
|
|
|
inline bool any_true(int32_16 a)
|
|
{
|
|
bool is_any_true = _mm512_movepi32_mask(a.s) > 0;
|
|
|
|
return is_any_true;
|
|
}
|
|
|
|
inline bool all_true(int32_4 a)
|
|
{
|
|
bool is_true = _mm_movemask_epi8(a.s) == 15;
|
|
|
|
return is_true;
|
|
}
|
|
|
|
inline bool all_true(int32_8 a)
|
|
{
|
|
bool is_true = _mm256_movemask_epi8(a.s) == 255;
|
|
|
|
return is_true;
|
|
}
|
|
|
|
inline bool all_true(int32_16 a)
|
|
{
|
|
bool is_true = _mm512_movepi32_mask(a.s) == 65535;
|
|
|
|
return is_true;
|
|
}
|
|
|
|
inline bool all_false(int32_4 a)
|
|
{
|
|
bool is_false = _mm_movemask_epi8(a.s) == 0;
|
|
|
|
return is_false;
|
|
}
|
|
|
|
inline bool all_false(int32_8 a)
|
|
{
|
|
bool is_false = _mm256_movemask_epi8(a.s) == 0;
|
|
|
|
return is_false;
|
|
}
|
|
|
|
inline bool all_false(int32_16 a)
|
|
{
|
|
// @todo This can be optimized (requires also changes in the comparison functions return)
|
|
bool is_false = _mm512_movepi32_mask(a.s) == 0;
|
|
|
|
return is_false;
|
|
}
|
|
|
|
// @todo from down here we can optimize some of the code by NOT using the wrappers
|
|
// the code is self contained and we could use te intrinsic functions directly
|
|
|
|
inline
|
|
void simd_mult(const int32* a, const int32* b, int32* result, int size, int steps)
|
|
{
|
|
int i = 0;
|
|
|
|
if (steps == 16) {
|
|
int32_16 a_16;
|
|
int32_16 b_16;
|
|
int32_16 result_16;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_16 = load_int32_16(a);
|
|
b_16 = load_int32_16(b);
|
|
result_16 = a_16 * b_16;
|
|
unload_int32_16(result_16, result);
|
|
}
|
|
} else if (steps == 8) {
|
|
int32_8 a_8;
|
|
int32_8 b_8;
|
|
int32_8 result_8;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_8 = load_int32_8(a);
|
|
b_8 = load_int32_8(b);
|
|
result_8 = a_8 * b_8;
|
|
unload_int32_8(result_8, result);
|
|
}
|
|
} else if (steps == 4) {
|
|
int32_4 a_4;
|
|
int32_4 b_4;
|
|
int32_4 result_4;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_4 = load_int32_4(a);
|
|
b_4 = load_int32_4(b);
|
|
result_4 = a_4 * b_4;
|
|
unload_int32_4(result_4, result);
|
|
}
|
|
}
|
|
|
|
for (; i < size; ++i) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
*result = *a * *b;
|
|
}
|
|
}
|
|
|
|
inline
|
|
void simd_mult(const int32* a, const f32* b, f32* result, int size, int steps)
|
|
{
|
|
int i = 0;
|
|
|
|
if (steps == 16) {
|
|
int32_16 a_16;
|
|
f32_16 af_16;
|
|
f32_16 b_16;
|
|
f32_16 result_16;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_16 = load_int32_16(a);
|
|
af_16 = int32_16_to_f32_16(a_16);
|
|
b_16 = load_f32_16(b);
|
|
result_16 = af_16 * b_16;
|
|
unload_f32_16(result_16, result);
|
|
}
|
|
} else if (steps == 8) {
|
|
int32_8 a_8;
|
|
f32_8 af_8;
|
|
f32_8 b_8;
|
|
f32_8 result_8;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_8 = load_int32_8(a);
|
|
af_8 = int32_8_to_f32_8(a_8);
|
|
b_8 = load_f32_8(b);
|
|
result_8 = af_8 * b_8;
|
|
unload_f32_8(result_8, result);
|
|
}
|
|
} else if (steps == 4) {
|
|
int32_4 a_4;
|
|
f32_4 af_4;
|
|
f32_4 b_4;
|
|
f32_4 result_4;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_4 = load_int32_4(a);
|
|
af_4 = int32_4_to_f32_4(a_4);
|
|
b_4 = load_f32_4(b);
|
|
result_4 = af_4 * b_4;
|
|
unload_f32_4(result_4, result);
|
|
}
|
|
}
|
|
|
|
for (; i < size; ++i) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
*result = *a * *b;
|
|
}
|
|
}
|
|
|
|
inline
|
|
void simd_mult(const int32* a, const f32* b, int32* result, int size, int steps)
|
|
{
|
|
int i = 0;
|
|
|
|
if (steps == 16) {
|
|
int32_16 a_16;
|
|
f32_16 af_16;
|
|
f32_16 b_16;
|
|
f32_16 result_16;
|
|
int32_16 resulti_16;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_16 = load_int32_16(a);
|
|
af_16 = int32_16_to_f32_16(a_16);
|
|
b_16 = load_f32_16(b);
|
|
result_16 = af_16 * b_16;
|
|
resulti_16 = f32_16_to_int32_16(result_16);
|
|
unload_int32_16(resulti_16, result);
|
|
}
|
|
} else if (steps == 8) {
|
|
int32_8 a_8;
|
|
f32_8 af_8;
|
|
f32_8 b_8;
|
|
f32_8 result_8;
|
|
int32_8 resulti_8;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_8 = load_int32_8(a);
|
|
af_8 = int32_8_to_f32_8(a_8);
|
|
b_8 = load_f32_8(b);
|
|
result_8 = af_8 * b_8;
|
|
resulti_8 = f32_8_to_int32_8(result_8);
|
|
unload_int32_8(resulti_8, result);
|
|
}
|
|
} else if (steps == 4) {
|
|
int32_4 a_4;
|
|
f32_4 af_4;
|
|
f32_4 b_4;
|
|
f32_4 result_4;
|
|
int32_4 resulti_4;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_4 = load_int32_4(a);
|
|
af_4 = int32_4_to_f32_4(a_4);
|
|
b_4 = load_f32_4(b);
|
|
result_4 = af_4 * b_4;
|
|
resulti_4 = f32_4_to_int32_4(result_4);
|
|
unload_int32_4(resulti_4, result);
|
|
}
|
|
}
|
|
|
|
for (; i < size; ++i) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
*result = *a * *b;
|
|
}
|
|
}
|
|
|
|
inline
|
|
void int32_4_mult(const int32* a, const int32* b, int32* result)
|
|
{
|
|
int32_4 a_4 = load_int32_4(a);
|
|
int32_4 b_4 = load_int32_4(b);
|
|
int32_4 result_4 = a_4 * b_4;
|
|
|
|
unload_int32_4(result_4, result);
|
|
}
|
|
|
|
inline
|
|
void int32_8_mult(const int32* a, const int32* b, int32* result)
|
|
{
|
|
int32_8 a_8 = load_int32_8(a);
|
|
int32_8 b_8 = load_int32_8(b);
|
|
int32_8 result_8 = a_8 * b_8;
|
|
|
|
unload_int32_8(result_8, result);
|
|
}
|
|
|
|
inline
|
|
void int32_16_mult(const int32* a, const int32* b, int32* result)
|
|
{
|
|
int32_16 a_16 = load_int32_16(a);
|
|
int32_16 b_16 = load_int32_16(b);
|
|
int32_16 result_16 = a_16 * b_16;
|
|
|
|
unload_int32_16(result_16, result);
|
|
}
|
|
|
|
inline
|
|
void int32_4_mult(const int32* a, const f32* b, f32* result)
|
|
{
|
|
int32_4 a_4 = load_int32_4(a);
|
|
f32_4 af_4 = int32_4_to_f32_4(a_4);
|
|
f32_4 b_4 = load_f32_4(b);
|
|
f32_4 result_4 = af_4 * b_4;
|
|
|
|
unload_f32_4(result_4, result);
|
|
}
|
|
|
|
inline
|
|
void int32_8_mult(const int32* a, const f32* b, f32* result)
|
|
{
|
|
int32_8 a_8 = load_int32_8(a);
|
|
f32_8 af_8 = int32_8_to_f32_8(a_8);
|
|
f32_8 b_8 = load_f32_8(b);
|
|
f32_8 result_8 = af_8 * b_8;
|
|
|
|
unload_f32_8(result_8, result);
|
|
}
|
|
|
|
inline
|
|
void int32_16_mult(const int32* a, const f32* b, f32* result)
|
|
{
|
|
int32_16 a_16 = load_int32_16(a);
|
|
f32_16 af_16 = int32_16_to_f32_16(a_16);
|
|
f32_16 b_16 = load_f32_16(b);
|
|
f32_16 result_16 = af_16 * b_16;
|
|
|
|
unload_f32_16(result_16, result);
|
|
}
|
|
|
|
inline
|
|
void simd_add(const int32* a, const int32* b, int32* result, int size, int steps)
|
|
{
|
|
int i = 0;
|
|
|
|
if (steps == 16) {
|
|
int32_16 a_16;
|
|
int32_16 b_16;
|
|
int32_16 result_16;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_16 = load_int32_16(a);
|
|
b_16 = load_int32_16(b);
|
|
result_16 = a_16 + b_16;
|
|
unload_int32_16(result_16, result);
|
|
}
|
|
} else if (steps == 8) {
|
|
int32_8 a_8;
|
|
int32_8 b_8;
|
|
int32_8 result_8;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_8 = load_int32_8(a);
|
|
b_8 = load_int32_8(b);
|
|
result_8 = a_8 + b_8;
|
|
unload_int32_8(result_8, result);
|
|
}
|
|
} else if (steps == 4) {
|
|
int32_4 a_4;
|
|
int32_4 b_4;
|
|
int32_4 result_4;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_4 = load_int32_4(a);
|
|
b_4 = load_int32_4(b);
|
|
result_4 = a_4 + b_4;
|
|
unload_int32_4(result_4, result);
|
|
}
|
|
}
|
|
|
|
for (; i < size; ++i) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
*result = *a + *b;
|
|
}
|
|
}
|
|
|
|
inline
|
|
void simd_add(const int32* a, const f32* b, f32* result, int size, int steps)
|
|
{
|
|
int i = 0;
|
|
|
|
if (steps == 16) {
|
|
int32_16 a_16;
|
|
f32_16 af_16;
|
|
f32_16 b_16;
|
|
f32_16 result_16;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_16 = load_int32_16(a);
|
|
af_16 = int32_16_to_f32_16(a_16);
|
|
b_16 = load_f32_16(b);
|
|
result_16 = af_16 + b_16;
|
|
unload_f32_16(result_16, result);
|
|
}
|
|
} else if (steps == 8) {
|
|
int32_8 a_8;
|
|
f32_8 af_8;
|
|
f32_8 b_8;
|
|
f32_8 result_8;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_8 = load_int32_8(a);
|
|
af_8 = int32_8_to_f32_8(a_8);
|
|
b_8 = load_f32_8(b);
|
|
result_8 = af_8 + b_8;
|
|
unload_f32_8(result_8, result);
|
|
}
|
|
} else if (steps == 4) {
|
|
int32_4 a_4;
|
|
f32_4 af_4;
|
|
f32_4 b_4;
|
|
f32_4 result_4;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_4 = load_int32_4(a);
|
|
af_4 = int32_4_to_f32_4(a_4);
|
|
b_4 = load_f32_4(b);
|
|
result_4 = af_4 + b_4;
|
|
unload_f32_4(result_4, result);
|
|
}
|
|
}
|
|
|
|
for (; i < size; ++i) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
*result = *a + *b;
|
|
}
|
|
}
|
|
|
|
inline
|
|
void simd_add(const int32* a, const f32* b, int32* result, int size, int steps)
|
|
{
|
|
int i = 0;
|
|
|
|
if (steps == 16) {
|
|
int32_16 a_16;
|
|
f32_16 af_16;
|
|
f32_16 b_16;
|
|
f32_16 result_16;
|
|
int32_16 resulti_16;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_16 = load_int32_16(a);
|
|
af_16 = int32_16_to_f32_16(a_16);
|
|
b_16 = load_f32_16(b);
|
|
result_16 = af_16 + b_16;
|
|
resulti_16 = f32_16_to_int32_16(result_16);
|
|
unload_int32_16(resulti_16, result);
|
|
}
|
|
} else if (steps == 8) {
|
|
int32_8 a_8;
|
|
f32_8 af_8;
|
|
f32_8 b_8;
|
|
f32_8 result_8;
|
|
int32_8 resulti_8;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_8 = load_int32_8(a);
|
|
af_8 = int32_8_to_f32_8(a_8);
|
|
b_8 = load_f32_8(b);
|
|
result_8 = af_8 + b_8;
|
|
resulti_8 = f32_8_to_int32_8(result_8);
|
|
unload_int32_8(resulti_8, result);
|
|
}
|
|
} else if (steps == 4) {
|
|
int32_4 a_4;
|
|
f32_4 af_4;
|
|
f32_4 b_4;
|
|
f32_4 result_4;
|
|
int32_4 resulti_4;
|
|
|
|
for (i = 0; i <= size - steps; i += steps) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
a_4 = load_int32_4(a);
|
|
af_4 = int32_4_to_f32_4(a_4);
|
|
b_4 = load_f32_4(b);
|
|
result_4 = af_4 + b_4;
|
|
resulti_4 = f32_4_to_int32_4(result_4);
|
|
unload_int32_4(resulti_4, result);
|
|
}
|
|
}
|
|
|
|
for (; i < size; ++i) {
|
|
++a;
|
|
++b;
|
|
++result;
|
|
|
|
*result = *a + *b;
|
|
}
|
|
}
|
|
|
|
inline
|
|
void int32_4_add(const int32* a, const int32* b, int32* result)
|
|
{
|
|
int32_4 a_4 = load_int32_4(a);
|
|
int32_4 b_4 = load_int32_4(b);
|
|
int32_4 result_4 = a_4 + b_4;
|
|
|
|
unload_int32_4(result_4, result);
|
|
}
|
|
|
|
inline
|
|
void int32_8_add(const int32* a, const int32* b, int32* result)
|
|
{
|
|
int32_8 a_8 = load_int32_8(a);
|
|
int32_8 b_8 = load_int32_8(b);
|
|
int32_8 result_8 = a_8 + b_8;
|
|
|
|
unload_int32_8(result_8, result);
|
|
}
|
|
|
|
inline
|
|
void int32_16_add(const int32* a, const int32* b, int32* result)
|
|
{
|
|
int32_16 a_16 = load_int32_16(a);
|
|
int32_16 b_16 = load_int32_16(b);
|
|
int32_16 result_16 = a_16 + b_16;
|
|
|
|
unload_int32_16(result_16, result);
|
|
}
|
|
|
|
inline
|
|
void int32_4_add(const int32* a, const f32* b, f32* result)
|
|
{
|
|
int32_4 a_4 = load_int32_4(a);
|
|
f32_4 af_4 = int32_4_to_f32_4(a_4);
|
|
f32_4 b_4 = load_f32_4(b);
|
|
f32_4 result_4 = af_4 + b_4;
|
|
|
|
unload_f32_4(result_4, result);
|
|
}
|
|
|
|
inline
|
|
void int32_8_add(const int32* a, const f32* b, f32* result)
|
|
{
|
|
int32_8 a_8 = load_int32_8(a);
|
|
f32_8 af_8 = int32_8_to_f32_8(a_8);
|
|
f32_8 b_8 = load_f32_8(b);
|
|
f32_8 result_8 = af_8 + b_8;
|
|
|
|
unload_f32_8(result_8, result);
|
|
}
|
|
|
|
inline
|
|
void int32_16_add(const int32* a, const f32* b, f32* result)
|
|
{
|
|
int32_16 a_16 = load_int32_16(a);
|
|
f32_16 af_16 = int32_16_to_f32_16(a_16);
|
|
f32_16 b_16 = load_f32_16(b);
|
|
f32_16 result_16 = af_16 + b_16;
|
|
|
|
unload_f32_16(result_16, result);
|
|
}
|
|
|
|
// WARNING: only works with SSE4.2
|
|
// WARNING: incl. \0 both strings must be <= 16
|
|
bool simd_str_compare(const char* str1, const char* str2) {
|
|
__m128i s1 = _mm_loadu_si128((const __m128i*) str1);
|
|
__m128i s2 = _mm_loadu_si128((const __m128i*) str2);
|
|
|
|
return _mm_cmpistrc(s1, s2, _SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_EACH) == 0;
|
|
}
|
|
|
|
// @todo add more operations like the one above "int32_4_mult()"
|
|
|
|
#endif
|