cOMS/architecture/x86/simd/SIMD_F32_SSE.h
Dennis Eichhorn 39fbcf4300
Some checks are pending
CodeQL / Analyze (${{ matrix.language }}) (autobuild, c-cpp) (push) Waiting to run
Microsoft C++ Code Analysis / Analyze (push) Waiting to run
linux bug fixes
2025-03-22 01:10:19 +00:00

382 lines
5.4 KiB
C

/**
* Jingga
*
* @copyright Jingga
* @license OMS License 2.0
* @version 1.0.0
* @link https://jingga.app
*/
#ifndef COMS_STDLIB_SIMD_F32_SSE_H
#define COMS_STDLIB_SIMD_F32_SSE_H
#include <immintrin.h>
#include <xmmintrin.h>
#include "../../../stdlib/Types.h"
#include "SIMD_SVML_SSE.h"
struct f32_4 {
union {
#if ARM
svfloat32_t s;
#else
__m128 s;
#endif
f32 v[4];
};
};
inline f32_4 load_f32_4(const f32* mem)
{
f32_4 simd;
simd.s = _mm_load_ps(mem);
return simd;
}
inline f32_4 init_f32_4(const f32* mem)
{
f32_4 simd;
simd.s = _mm_set_ps(mem[0], mem[1], mem[2], mem[3]);
return simd;
}
inline void unload_f32_4(f32_4 a, f32 *array) { _mm_store_ps(array, a.s); }
inline f32_4 init_zero_f32_4()
{
f32_4 simd;
simd.s = _mm_setzero_ps();
return simd;
}
inline f32_4 init_value_f32_4(f32 value)
{
f32_4 simd;
simd.s = _mm_set1_ps(value);
return simd;
}
inline f32_4 init_values_f32_4(f32 a, f32 b, f32 c, f32 d)
{
f32_4 simd;
simd.s = _mm_set_ps(a, b, c, d);
return simd;
}
inline f32_4 operator+(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_add_ps(a.s, b.s);
return simd;
}
inline f32_4 operator-(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_sub_ps(a.s, b.s);
return simd;
}
inline f32_4 operator-(f32_4 a) { return init_zero_f32_4() - a; }
inline f32_4 operator*(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_mul_ps(a.s, b.s);
return simd;
}
inline f32_4 operator/(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_div_ps(a.s, b.s);
return simd;
}
inline f32_4 operator^(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_xor_ps(a.s, b.s);
return simd;
}
inline f32_4 &operator-=(f32_4 &a, f32_4 b)
{
a = a - b;
return a;
}
inline f32_4 &operator+=(f32_4 &a, f32_4 b)
{
a = a + b;
return a;
}
inline f32_4 &operator*=(f32_4 &a, f32_4 b)
{
a = a * b;
return a;
}
inline f32_4 &operator/=(f32_4 &a, f32_4 b)
{
a = a / b;
return a;
}
inline f32_4 &operator^=(f32_4 &a, f32_4 b)
{
a = a ^ b;
return a;
}
inline f32_4 operator<(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_cmplt_ps(a.s, b.s);
return simd;
}
inline f32_4 operator<=(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_cmple_ps(a.s, b.s);
return simd;
}
inline f32_4 operator>(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_cmpgt_ps(a.s, b.s);
return simd;
}
inline f32_4 operator>=(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_cmpge_ps(a.s, b.s);
return simd;
}
inline f32_4 operator==(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_cmpeq_ps(a.s, b.s);
return simd;
}
inline f32_4 operator!=(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_cmpneq_ps(a.s, b.s);
return simd;
}
inline f32_4 operator&(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_and_ps(a.s, b.s);
return simd;
}
inline f32_4 operator|(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_or_ps(a.s, b.s);
return simd;
}
inline f32_4 &operator&=(f32_4 &a, f32_4 b)
{
a = a & b;
return a;
}
inline f32_4 &operator|=(f32_4 &a, f32_4 b)
{
a = a | b;
return a;
}
inline f32_4 abs(f32_4 a)
{
uint32 unsigned_mask = (uint32) (1U << 31);
__m128 mask = _mm_set1_ps(*(f32 *) &unsigned_mask);
f32_4 simd;
simd.s = _mm_and_ps(a.s, mask);
return simd;
}
inline f32_4 simd_min(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_min_ps(a.s, b.s);
return simd;
}
inline f32_4 simd_max(f32_4 a, f32_4 b)
{
f32_4 simd;
simd.s = _mm_max_ps(a.s, b.s);
return simd;
}
inline f32_4 sign(f32_4 a)
{
uint32 umask = (uint32) (1U << 31);
__m128 mask = _mm_set1_ps(*(f32 *) &umask);
f32_4 signBit;
signBit.s = _mm_and_ps(a.s, mask);
f32_4 b;
b.s = _mm_set1_ps(1.0f);
f32_4 simd = b | signBit;
return simd;
}
inline f32_4 floor(f32_4 a)
{
f32_4 simd;
simd.s = _mm_floor_ps(a.s);
return simd;
}
inline f32_4 ceil(f32_4 a)
{
f32_4 simd;
simd.s = _mm_ceil_ps(a.s);
return simd;
}
inline f32_4 sqrt(f32_4 a)
{
f32_4 simd;
simd.s = _mm_sqrt_ps(a.s);
return simd;
}
inline f32_4 sqrt_inv_approx(f32_4 a)
{
f32_4 simd;
simd.s = _mm_rsqrt_ps(a.s);
return simd;
}
inline f32_4 one_over_approx(f32_4 a)
{
f32_4 simd;
simd.s = _mm_rcp_ps(a.s);
return simd;
}
inline f32_4 clamp(f32_4 min_value, f32_4 a, f32_4 max_value)
{
return simd_min(simd_max(a, min_value), max_value);
}
inline int32 which_true(f32_4 a)
{
int32 which_true = _mm_movemask_ps(a.s);
return which_true;
}
inline bool any_true(f32_4 a)
{
bool is_any_true = _mm_movemask_ps(a.s) > 0;
return is_any_true;
}
inline bool all_true(f32_4 a)
{
bool is_true = _mm_movemask_ps(a.s) == 15;
return is_true;
}
inline bool all_false(f32_4 a)
{
bool is_false = _mm_movemask_ps(a.s) == 0;
return is_false;
}
inline
f32_4 simd_sin(f32_4 a)
{
f32_4 simd;
simd.s = _mm_sin_ps(a.s);
return simd;
}
inline
f32_4 simd_cos(f32_4 a)
{
f32_4 simd;
simd.s = _mm_cos_ps(a.s);
return simd;
}
inline
f32_4 simd_asin(f32_4 a)
{
f32_4 simd;
simd.s = _mm_asin_ps(a.s);
return simd;
}
inline
f32_4 simd_acos(f32_4 a)
{
f32_4 simd;
simd.s = _mm_acos_ps(a.s);
return simd;
}
// @todo implement more trigonometry function
#endif