cOMS/stdlib/HashMap.h

373 lines
11 KiB
C

/**
* Jingga
*
* @copyright Jingga
* @license OMS License 2.0
* @version 1.0.0
* @link https://jingga.app
*/
#ifndef TOS_STDLIB_HASHMAP_H
#define TOS_STDLIB_HASHMAP_H
#include "../hash/GeneralHash.h"
#include "../memory/RingMemory.h"
#include "../memory/BufferMemory.h"
#include "../memory/ChunkMemory.h"
#include "Types.h"
#define MAX_KEY_LENGTH 32
struct HashEntryInt32 {
int64 element_id;
char key[MAX_KEY_LENGTH];
HashEntryInt32* next;
int32 value;
};
struct HashEntryInt64 {
int64 element_id;
char key[MAX_KEY_LENGTH];
HashEntryInt64* next;
int64 value;
};
struct HashEntryUIntPtr {
int64 element_id;
char key[MAX_KEY_LENGTH];
HashEntryUIntPtr* next;
uintptr_t value;
};
struct HashEntryVoidP {
int64 element_id;
char key[MAX_KEY_LENGTH];
HashEntryVoidP* next;
void* value;
};
struct HashEntryFloat {
int64 element_id;
char key[MAX_KEY_LENGTH];
HashEntryFloat* next;
f32 value;
};
struct HashEntryStr {
int64 element_id;
char key[MAX_KEY_LENGTH];
HashEntryStr* next;
char value[MAX_KEY_LENGTH];
};
struct HashEntry {
int64 element_id;
char key[MAX_KEY_LENGTH];
HashEntry* next;
byte* value;
};
struct HashMap {
void** table;
ChunkMemory buf;
};
// WARNING: element_size = element size + remaining HashEntry data size
void hashmap_create(HashMap* hm, int32 count, int32 element_size, RingMemory* ring)
{
byte* data = ring_get_memory(
ring,
count * (sizeof(void *) + element_size)
+ CEIL_DIV(count, 64) * sizeof(hm->buf.free)
);
hm->table = (void **) data;
chunk_init(&hm->buf, data + sizeof(void *) * count, count, element_size, 1);
}
// WARNING: element_size = element size + remaining HashEntry data size
void hashmap_create(HashMap* hm, int32 count, int32 element_size, BufferMemory* buf)
{
byte* data = buffer_get_memory(
buf,
count * (sizeof(void *) + element_size)
+ CEIL_DIV(count, 64) * sizeof(hm->buf.free)
);
hm->table = (void **) data;
chunk_init(&hm->buf, data + sizeof(void *) * count, count, element_size, 1);
}
// WARNING: element_size = element size + remaining HashEntry data size
void hashmap_create(HashMap* hm, int32 count, int32 element_size, byte* buf)
{
hm->table = (void **) buf;
chunk_init(&hm->buf, buf + sizeof(void *) * count, count, element_size, 1);
}
// Calculates how large a hashmap will be
inline
int64 hashmap_size(int count, int32 element_size)
{
return count * sizeof(element_size) // table
+ count * element_size // elements
+ sizeof(uint64) * CEIL_DIV(count, 64); // free
}
inline
int64 hashmap_size(const HashMap* hm)
{
return hm->buf.count * sizeof(hm->table) + hm->buf.size;
}
void hashmap_insert(HashMap* hm, const char* key, int32 value) {
uint64 index = hash_djb2(key) % hm->buf.count;
int64 element = chunk_reserve(&hm->buf, 1);
HashEntryInt32* entry = (HashEntryInt32 *) chunk_get_element(&hm->buf, element, true);
entry->element_id = element;
strncpy(entry->key, key, MAX_KEY_LENGTH);
entry->key[MAX_KEY_LENGTH - 1] = '\0';
entry->value = value;
entry->next = (HashEntryInt32 *) hm->table[index];
hm->table[index] = entry;
}
void hashmap_insert(HashMap* hm, const char* key, int64 value) {
uint64 index = hash_djb2(key) % hm->buf.count;
int64 element = chunk_reserve(&hm->buf, 1);
HashEntryInt64* entry = (HashEntryInt64 *) chunk_get_element(&hm->buf, element, true);
entry->element_id = element;
strncpy(entry->key, key, MAX_KEY_LENGTH);
entry->key[MAX_KEY_LENGTH - 1] = '\0';
entry->value = value;
entry->next = (HashEntryInt64 *) hm->table[index];
hm->table[index] = entry;
}
void hashmap_insert(HashMap* hm, const char* key, uintptr_t value) {
uint64 index = hash_djb2(key) % hm->buf.count;
int64 element = chunk_reserve(&hm->buf, 1);
HashEntryUIntPtr* entry = (HashEntryUIntPtr *) chunk_get_element(&hm->buf, element, true);
entry->element_id = element;
strncpy(entry->key, key, MAX_KEY_LENGTH);
entry->key[MAX_KEY_LENGTH - 1] = '\0';
entry->value = value;
entry->next = (HashEntryUIntPtr *) hm->table[index];
hm->table[index] = entry;
}
void hashmap_insert(HashMap* hm, const char* key, void* value) {
uint64 index = hash_djb2(key) % hm->buf.count;
int64 element = chunk_reserve(&hm->buf, 1);
HashEntryVoidP* entry = (HashEntryVoidP *) chunk_get_element(&hm->buf, element, true);
entry->element_id = element;
strncpy(entry->key, key, MAX_KEY_LENGTH);
entry->key[MAX_KEY_LENGTH - 1] = '\0';
entry->value = value;
entry->next = (HashEntryVoidP *) hm->table[index];
hm->table[index] = entry;
}
void hashmap_insert(HashMap* hm, const char* key, f32 value) {
uint64 index = hash_djb2(key) % hm->buf.count;
int64 element = chunk_reserve(&hm->buf, 1);
HashEntryFloat* entry = (HashEntryFloat *) chunk_get_element(&hm->buf, element, true);
entry->element_id = element;
strncpy(entry->key, key, MAX_KEY_LENGTH);
entry->key[MAX_KEY_LENGTH - 1] = '\0';
entry->value = value;
entry->next = (HashEntryFloat *) hm->table[index];
hm->table[index] = entry;
}
void hashmap_insert(HashMap* hm, const char* key, const char* value) {
uint64 index = hash_djb2(key) % hm->buf.count;
int64 element = chunk_reserve(&hm->buf, 1);
HashEntryStr* entry = (HashEntryStr *) chunk_get_element(&hm->buf, element, true);
entry->element_id = element;
strncpy(entry->key, key, MAX_KEY_LENGTH);
entry->key[MAX_KEY_LENGTH - 1] = '\0';
strncpy(entry->value, value, MAX_KEY_LENGTH);
entry->value[MAX_KEY_LENGTH - 1] = '\0';
entry->next = (HashEntryStr *) hm->table[index];
hm->table[index] = entry;
}
void hashmap_insert(HashMap* hm, const char* key, byte* value) {
uint64 index = hash_djb2(key) % hm->buf.count;
int64 element = chunk_reserve(&hm->buf, 1);
HashEntry* entry = (HashEntry *) chunk_get_element(&hm->buf, element, true);
entry->element_id = element;
entry->value = (byte *) entry + sizeof(HashEntry);
strncpy(entry->key, key, MAX_KEY_LENGTH);
entry->key[MAX_KEY_LENGTH - 1] = '\0';
memcpy(entry->value, value, hm->buf.chunk_size - sizeof(HashEntry));
entry->next = (HashEntry *) hm->table[index];
hm->table[index] = entry;
}
HashEntry* hashmap_get_entry(HashMap* hm, const char* key) {
uint64 index = hash_djb2(key) % hm->buf.count;
HashEntry* entry = (HashEntry *) hm->table[index];
while (entry != NULL) {
if (strncmp(entry->key, key, MAX_KEY_LENGTH) == 0) {
return entry;
}
entry = (HashEntry *) entry->next;
}
return NULL;
}
// This function only saves one step (omission of the hash function)
// The reason for this is in some cases we can use compile time hashing
HashEntry* hashmap_get_entry(HashMap* hm, const char* key, uint64 index) {
index %= hm->buf.count;
HashEntry* entry = (HashEntry *) hm->table[index];
while (entry != NULL) {
if (strncmp(entry->key, key, MAX_KEY_LENGTH) == 0) {
return entry;
}
entry = (HashEntry *) entry->next;
}
return NULL;
}
void hashmap_delete_entry(HashMap* hm, const char* key) {
uint64 index = hash_djb2(key);
HashEntry* entry = (HashEntry *) hm->table[index];
HashEntry* prev = NULL;
while (entry != NULL) {
if (strncmp(entry->key, key, MAX_KEY_LENGTH) == 0) {
if (prev == NULL) {
hm->table[index] = entry->next;
} else {
prev->next = entry->next;
}
chunk_free_element(&hm->buf, entry->element_id);
return;
}
prev = entry;
entry = entry->next;
}
}
// @bug We cannot know if the data needs endian swap (it coult be int/float, but also some other 4/8 byte value)
// -> if we save this to a file and load it on a different system we will have "corrupt" data
inline
int64 hashmap_dump(const HashMap* hm, byte* data)
{
*((uint64 *) data) = SWAP_ENDIAN_LITTLE(hm->buf.count);
data += sizeof(uint64);
uint64 next_count_total = 0;
// Dump the table content where the elements are relative indeces/pointers
for (int32 i = 0; i < hm->buf.count; ++i) {
*((uint64 *) data) = SWAP_ENDIAN_LITTLE((uintptr_t) hm->table[i] - (uintptr_t) hm->buf.memory);
data += sizeof(uint64);
// Also dump the next pointer
// Count how many next elements we have
HashEntry* entry = ((HashEntry *) hm->table[i])->next;
int32 next_count = 0;
while (entry) {
++next_count;
entry = entry->next;
}
next_count_total += next_count;
*((int32 *) data) = SWAP_ENDIAN_LITTLE(next_count);
data += sizeof(next_count);
if (next_count > 0) {
entry = ((HashEntry *) hm->table[i])->next;
while (entry) {
*((uint64 *) data) = SWAP_ENDIAN_LITTLE((uintptr_t) entry - (uintptr_t) hm->buf.memory);
data += sizeof(uint64);
entry = entry->next;
}
}
}
// @performance chunk_dump() below contains some data we already output above
// (next pointer but it is useless, since we need relative positions)
// Maybe we should manually re-create the chunk_dump here and omit the already dumped data for the next pointer?
// How many bytes were written (+ dump the chunk memory)
return sizeof(hm->buf.count)
+ hm->buf.count * sizeof(uint64) // table content
+ hm->buf.count * sizeof(int32) // counter for the next pointer (one for every element)
+ next_count_total * sizeof(uint64) // next pointer offset
+ chunk_dump(&hm->buf, data);
}
inline
int64 hashmap_load(HashMap* hm, const byte* data)
{
uint64 count = SWAP_ENDIAN_LITTLE(*((uint64 *) data));
data += sizeof(uint64);
uint64 next_count_total = 0;
// Load the table content, we also need to convert from relative indeces to pointers
for (int i = 0; i < count; ++i) {
hm->table[i] = hm->buf.memory + SWAP_ENDIAN_LITTLE(*((uint64 *) data));
data += sizeof(uint64);
// Also load the next pointer
// Count how many next elements we have
int32 next_count = SWAP_ENDIAN_LITTLE(*((int32 *) data));
data += sizeof(next_count);
HashEntry* entry = ((HashEntry *) hm->table[i]);
for (int32 j = 0; j < next_count; ++j) {
entry->next = (HashEntry *) (hm->buf.memory + SWAP_ENDIAN_LITTLE(*((uint64 *) data)));
data += sizeof(uint64);
entry = entry->next;
}
}
// How many bytes was read from data
return sizeof(count)
+ hm->buf.count * sizeof(uint64) // table content
+ hm->buf.count * sizeof(int32) // counter for the next pointer (one for every element)
+ next_count_total * sizeof(uint64) // next pointer offset
+ chunk_load(&hm->buf, data);
}
#endif