/** * Jingga * * @copyright Jingga * @license OMS License 2.0 * @version 1.0.0 * @link https://jingga.app */ #ifndef TOS_MEMORY_THREADED_QUEUE_H #define TOS_MEMORY_THREADED_QUEUE_H // @todo This is a horrible implementation. Please implement a lock free solution #include "../stdlib/Types.h" #include "../utils/Utils.h" #include "RingMemory.h" #if _WIN32 #include "../platform/win32/threading/Thread.h" #include "../platform/win32/threading/Semaphore.h" #elif __linux__ #include "../platform/linux/threading/Thread.h" #include "../platform/linux/threading/Semaphore.h" #endif struct ThreadedQueue { byte* memory; byte* end; byte* head; // This variable is usually only used by single producer/consumer code mostly found in threads. // One thread inserts elements -> updates head // The other thread reads elements -> updates tail // This code itself doesn't change this variable byte* tail; uint64 size; uint32 alignment; // The ring memory ends here uint32 element_size; // We support both conditional locking and semaphore locking // These values are not initialized and not used unless you use the queue pthread_mutex_t mutex; pthread_cond_t cond; sem_t empty; sem_t full; }; inline void thrd_queue_alloc(ThreadedQueue* queue, uint32 element_count, uint64 element_size, uint32 alignment = 64) { element_size = ROUND_TO_NEAREST(element_size, alignment); ring_alloc((RingMemory *) queue, element_count * element_size, alignment); queue->element_size = element_size; pthread_mutex_init(&queue->mutex, NULL); pthread_cond_init(&queue->cond, NULL); sem_init(&queue->empty, element_count); sem_init(&queue->full, 0); } inline void thrd_queue_init(ThreadedQueue* queue, BufferMemory* buf, uint32 element_count, uint64 element_size, uint32 alignment = 64) { element_size = ROUND_TO_NEAREST(element_size, alignment); ring_init((RingMemory *) queue, buf, element_count * element_size, alignment); queue->element_size = element_size; pthread_mutex_init(&queue->mutex, NULL); pthread_cond_init(&queue->cond, NULL); sem_init(&queue->empty, element_count); sem_init(&queue->full, 0); } inline void thrd_queue_init(ThreadedQueue* queue, byte* buf, uint32 element_count, uint64 element_size, uint32 alignment = 64) { element_size = ROUND_TO_NEAREST(element_size, alignment); ring_init((RingMemory *) queue, buf, element_count * element_size, alignment); queue->element_size = element_size; pthread_mutex_init(&queue->mutex, NULL); pthread_cond_init(&queue->cond, NULL); sem_init(&queue->empty, element_count); sem_init(&queue->full, 0); } inline void thrd_queue_free(ThreadedQueue* queue) { ring_free((RingMemory *) queue); sem_destroy(&queue->empty); sem_destroy(&queue->full); pthread_mutex_destroy(&queue->mutex); pthread_cond_destroy(&queue->cond); } // @todo Create enqueue_unique and enqueue_unique_sem inline void thrd_queue_enqueue_unique_wait(ThreadedQueue* queue, const byte* data) { ASSERT_SIMPLE((uint64_t) data % 4 == 0); pthread_mutex_lock(&queue->mutex); byte* tail = queue->tail; while (tail != queue->tail) { ASSERT_SIMPLE((uint64_t) tail % 4 == 0); // @performance we could probably make this faster since we don't need to compare the entire range if (is_equal_aligned(tail, data, queue->element_size) == 0) { pthread_mutex_unlock(&queue->mutex); return; } ring_move_pointer((RingMemory *) queue, &tail, queue->element_size, queue->alignment); } while (!ring_commit_safe((RingMemory *) queue, queue->element_size, queue->alignment)) { pthread_cond_wait(&queue->cond, &queue->mutex); } byte* mem = ring_get_memory((RingMemory *) queue, queue->element_size, queue->alignment); memcpy(mem, data, queue->element_size); pthread_cond_signal(&queue->cond); pthread_mutex_unlock(&queue->mutex); } inline void thrd_queue_enqueue_unique(ThreadedQueue* queue, const byte* data) { ASSERT_SIMPLE((uint64_t) data % 4 == 0); pthread_mutex_lock(&queue->mutex); byte* tail = queue->tail; while (tail != queue->tail) { ASSERT_SIMPLE((uint64_t) tail % 4 == 0); // @performance we could probably make this faster since we don't need to compare the entire range if (is_equal_aligned(tail, data, queue->element_size) == 0) { pthread_mutex_unlock(&queue->mutex); return; } ring_move_pointer((RingMemory *) queue, &tail, queue->element_size, queue->alignment); } if (!ring_commit_safe((RingMemory *) queue, queue->element_size, queue->alignment)) { pthread_mutex_unlock(&queue->mutex); return; } byte* mem = ring_get_memory((RingMemory *) queue, queue->element_size, queue->alignment); memcpy(mem, data, queue->element_size); pthread_cond_signal(&queue->cond); pthread_mutex_unlock(&queue->mutex); } // Conditional Lock inline void thrd_queue_enqueue(ThreadedQueue* queue, const byte* data) { pthread_mutex_lock(&queue->mutex); if (!ring_commit_safe((RingMemory *) queue, queue->element_size, queue->alignment)) { pthread_mutex_unlock(&queue->mutex); return; } byte* mem = ring_get_memory((RingMemory *) queue, queue->element_size, queue->alignment); memcpy(mem, data, queue->element_size); pthread_cond_signal(&queue->cond); pthread_mutex_unlock(&queue->mutex); } inline void thrd_queue_enqueue_wait(ThreadedQueue* queue, const byte* data) { pthread_mutex_lock(&queue->mutex); while (!ring_commit_safe((RingMemory *) queue, queue->element_size, queue->alignment)) { pthread_cond_wait(&queue->cond, &queue->mutex); } byte* mem = ring_get_memory((RingMemory *) queue, queue->element_size, queue->alignment); memcpy(mem, data, queue->element_size); pthread_cond_signal(&queue->cond); pthread_mutex_unlock(&queue->mutex); } inline byte* thrd_queue_enqueue_start_wait(ThreadedQueue* queue) { pthread_mutex_lock(&queue->mutex); while (!ring_commit_safe((RingMemory *) queue, queue->element_size, queue->alignment)) { pthread_cond_wait(&queue->cond, &queue->mutex); } return ring_get_memory((RingMemory *) queue, queue->element_size, queue->alignment); } inline void thrd_queue_enqueue_end_wait(ThreadedQueue* queue) { pthread_cond_signal(&queue->cond); pthread_mutex_unlock(&queue->mutex); } inline bool thrd_queue_dequeue(ThreadedQueue* queue, byte* data) { if (queue->head == queue->tail) { return false; } // we do this twice because the first one is very fast but may return a false positive pthread_mutex_lock(&queue->mutex); if (queue->head == queue->tail) { pthread_mutex_unlock(&queue->mutex); return false; } if (queue->element_size == 4) { *((int32 *) data) = *((int32 *) queue->tail); } else { memcpy(data, queue->tail, queue->element_size); } ring_move_pointer((RingMemory *) queue, &queue->tail, queue->element_size, queue->alignment); pthread_cond_signal(&queue->cond); pthread_mutex_unlock(&queue->mutex); return true; } inline bool thrd_queue_empty(ThreadedQueue* queue) { pthread_mutex_lock(&queue->mutex); bool is_empty = queue->head == queue->tail; pthread_mutex_unlock(&queue->mutex); return is_empty; } inline bool thrd_queue_full(ThreadedQueue* queue) { pthread_mutex_lock(&queue->mutex); bool is_full = !ring_commit_safe((RingMemory *) queue, queue->element_size, queue->alignment); pthread_mutex_unlock(&queue->mutex); return is_full; } // Waits until a dequeue is available inline void thrd_queue_dequeue_wait(ThreadedQueue* queue, byte* data) { pthread_mutex_lock(&queue->mutex); while (queue->head == queue->tail) { pthread_cond_wait(&queue->cond, &queue->mutex); } memcpy(data, queue->tail, queue->element_size); ring_move_pointer((RingMemory *) queue, &queue->tail, queue->element_size, queue->alignment); pthread_cond_signal(&queue->cond); pthread_mutex_unlock(&queue->mutex); } inline byte* thrd_queue_dequeue_start_wait(ThreadedQueue* queue) { pthread_mutex_lock(&queue->mutex); while (queue->head == queue->tail) { pthread_cond_wait(&queue->cond, &queue->mutex); } return queue->tail; } inline void thrd_queue_dequeue_end_wait(ThreadedQueue* queue) { ring_move_pointer((RingMemory *) queue, &queue->tail, queue->element_size, queue->alignment); pthread_cond_signal(&queue->cond); pthread_mutex_unlock(&queue->mutex); } // Semaphore Lock inline void thrd_queue_enqueue_sem_wait(ThreadedQueue* queue, const byte* data) { sem_wait(&queue->empty); pthread_mutex_lock(&queue->mutex); byte* mem = ring_get_memory((RingMemory *) queue, queue->element_size, queue->alignment); memcpy(mem, data, queue->element_size); pthread_mutex_unlock(&queue->mutex); sem_post(&queue->full); } inline bool thrd_queue_enqueue_sem_timedwait(ThreadedQueue* queue, const byte* data, uint64 wait) { if (sem_timedwait(&queue->empty, wait)) { return false; } pthread_mutex_lock(&queue->mutex); byte* mem = ring_get_memory((RingMemory *) queue, queue->element_size, queue->alignment); memcpy(mem, data, queue->element_size); pthread_mutex_unlock(&queue->mutex); sem_post(&queue->full); return true; } inline byte* thrd_queue_enqueue_start_sem_wait(ThreadedQueue* queue) { sem_wait(&queue->empty); pthread_mutex_lock(&queue->mutex); return ring_get_memory((RingMemory *) queue, queue->element_size, queue->alignment); } inline void thrd_queue_enqueue_end_sem_wait(ThreadedQueue* queue) { pthread_mutex_unlock(&queue->mutex); sem_post(&queue->full); } inline byte* thrd_queue_dequeue_sem_wait(ThreadedQueue* queue, byte* data) { sem_wait(&queue->full); pthread_mutex_lock(&queue->mutex); memcpy(data, queue->tail, queue->element_size); ring_move_pointer((RingMemory *) queue, &queue->tail, queue->element_size, queue->alignment); pthread_mutex_unlock(&queue->mutex); sem_post(&queue->empty); } inline bool thrd_queue_dequeue_sem_timedwait(ThreadedQueue* queue, byte* data, uint64 wait) { if (sem_timedwait(&queue->full, wait)) { return false; } pthread_mutex_lock(&queue->mutex); memcpy(data, queue->tail, queue->element_size); ring_move_pointer((RingMemory *) queue, &queue->tail, queue->element_size, queue->alignment); pthread_mutex_unlock(&queue->mutex); sem_post(&queue->empty); return true; } inline byte* thrd_queue_dequeue_start_sem_wait(ThreadedQueue* queue) { sem_wait(&queue->full); pthread_mutex_lock(&queue->mutex); return queue->tail; } inline void thrd_queue_dequeue_end_sem_wait(ThreadedQueue* queue) { ring_move_pointer((RingMemory *) queue, &queue->tail, queue->element_size, queue->alignment); pthread_mutex_unlock(&queue->mutex); sem_post(&queue->empty); } #endif