/** * Jingga * * @copyright Jingga * @license OMS License 2.0 * @version 1.0.0 * @link https://jingga.app */ #ifndef TOS_PLATFORM_WIN32_SYSTEM_INFO_C #define TOS_PLATFORM_WIN32_SYSTEM_INFO_C #include #include #include "../../stdlib/Types.h" #include "../../utils/StringUtils.h" #include "../../system/SystemInfo.h" #include "../../architecture/CpuInfo.cpp" #include #include #include #include #include #include #include #include #include #include #include #include #include #include // @performance Do we really need all these libs, can't we simplify that?! // At least we should dynamically load them, this way the application won't crash if the lib doesn't exist #include #pragma comment(lib, "Advapi32.lib") #pragma comment(lib, "wbemuuid.lib") #pragma comment(lib, "iphlpapi.lib") #pragma comment(lib, "d3d12.lib") #pragma comment(lib, "dxgi.lib") #pragma comment(lib, "Ws2_32.lib") #pragma comment(lib, "setupapi.lib") #pragma comment(lib, "cfgmgr32.lib") #pragma comment(lib, "comsuppw.lib") uint64 system_private_memory_usage() { PROCESS_MEMORY_COUNTERS_EX pmc; HANDLE process = GetCurrentProcess(); GetProcessMemoryInfo(process, (PROCESS_MEMORY_COUNTERS *) &pmc, sizeof(pmc)); CloseHandle(process); return pmc.PrivateUsage; } uint64 system_app_memory_usage() { MEMORY_BASIC_INFORMATION mbi; SIZE_T address = 0; size_t total_size = 0; // MEM_IMAGE = DLL memory // MEM_MAPPED = Mapped files while (VirtualQueryEx(GetCurrentProcess(), (LPCVOID) address, &mbi, sizeof(mbi)) == sizeof(mbi)) { if (mbi.State == MEM_COMMIT && (mbi.Type == MEM_IMAGE || mbi.Type == MEM_MAPPED)) { total_size += mbi.RegionSize; } address += mbi.RegionSize; } return total_size; } uint16 system_language_code() { LANGID lang_id = GetUserDefaultUILanguage(); wchar_t local_name[LOCALE_NAME_MAX_LENGTH]; if (!LCIDToLocaleName(lang_id, local_name, LOCALE_NAME_MAX_LENGTH, 0)) { return 0; } return (local_name[0] << 8) | local_name[1]; } uint16 system_country_code() { LANGID lang_id = GetUserDefaultUILanguage(); wchar_t local_name[LOCALE_NAME_MAX_LENGTH]; if (!LCIDToLocaleName(lang_id, local_name, LOCALE_NAME_MAX_LENGTH, 0)) { return 0; } return (local_name[3] << 8) | local_name[4]; } void mainboard_info_get(MainboardInfo* info) { info->name[sizeof(info->name) - 1] = '\0'; info->serial_number[sizeof(info->serial_number) - 1] = '\0'; HRESULT hres; // Step 1: Initialize COM library hres = CoInitializeEx(0, COINIT_MULTITHREADED); if (FAILED(hres)) { return; } // Step 2: Set general COM security levels hres = CoInitializeSecurity( NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_DEFAULT, RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE, NULL ); if (FAILED(hres)) { CoUninitialize(); return; } // Step 3: Obtain initial locator to WMI IWbemLocator *pLoc = NULL; hres = CoCreateInstance( CLSID_WbemLocator, 0, CLSCTX_INPROC_SERVER, IID_IWbemLocator, (LPVOID *)&pLoc ); if (FAILED(hres)) { CoUninitialize(); return; } // Step 4: Connect to WMI through IWbemLocator::ConnectServer IWbemServices *pSvc = NULL; hres = pLoc->ConnectServer( _bstr_t(L"ROOT\\CIMV2"), NULL, NULL, 0, NULL, 0, 0, &pSvc ); if (FAILED(hres)) { pLoc->Release(); CoUninitialize(); return; } // Step 5: Set security levels on the proxy hres = CoSetProxyBlanket( pSvc, RPC_C_AUTHN_WINNT, RPC_C_AUTHZ_NONE, NULL, RPC_C_AUTHN_LEVEL_CALL, RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE ); if (FAILED(hres)) { pSvc->Release(); pLoc->Release(); CoUninitialize(); return; } // Step 6: Use the IWbemServices pointer to make a WMI query IEnumWbemClassObject* pEnumerator = NULL; hres = pSvc->ExecQuery( bstr_t("WQL"), bstr_t("SELECT * FROM Win32_BaseBoard"), WBEM_FLAG_FORWARD_ONLY | WBEM_FLAG_RETURN_IMMEDIATELY, NULL, &pEnumerator ); if (FAILED(hres)) { pSvc->Release(); pLoc->Release(); CoUninitialize(); return; } // Step 7: Retrieve the data IWbemClassObject *pclsObj = NULL; ULONG uReturn = 0; while (pEnumerator) { HRESULT hr = pEnumerator->Next(WBEM_INFINITE, 1, &pclsObj, &uReturn); if (0 == uReturn) { break; } VARIANT vtProp; hr = pclsObj->Get(L"Product", 0, &vtProp, 0, 0); if (SUCCEEDED(hr)) { wchar_to_char(vtProp.bstrVal); sprintf_fast(info->name, sizeof(info->name), "%s", vtProp.bstrVal); VariantClear(&vtProp); } hr = pclsObj->Get(L"SerialNumber", 0, &vtProp, 0, 0); if (SUCCEEDED(hr)) { wchar_to_char(vtProp.bstrVal); sprintf_fast(info->serial_number, sizeof(info->serial_number), "%s", vtProp.bstrVal); VariantClear(&vtProp); } pclsObj->Release(); } // Clean up pSvc->Release(); pLoc->Release(); pEnumerator->Release(); CoUninitialize(); info->name[sizeof(info->name) - 1] = '\0'; info->serial_number[sizeof(info->serial_number) - 1] = '\0'; } int32 network_info_get(NetworkInfo* info) { WSADATA wsaData; if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0) { return 0; } DWORD dwSize = 0; PIP_ADAPTER_ADDRESSES pAdapterAddresses = NULL; PIP_ADAPTER_ADDRESSES pAdapter = NULL; // Get the size of the adapter addresses buffer if (GetAdaptersAddresses(AF_UNSPEC, 0, NULL, NULL, &dwSize) == ERROR_BUFFER_OVERFLOW) { // @todo Remove malloc pAdapterAddresses = (PIP_ADAPTER_ADDRESSES) malloc(dwSize); if (pAdapterAddresses == NULL) { WSACleanup(); return 0; } } else { WSACleanup(); return 0; } // Get the adapter addresses if (GetAdaptersAddresses(AF_UNSPEC, 0, NULL, pAdapterAddresses, &dwSize) != NO_ERROR) { free(pAdapterAddresses); WSACleanup(); return 0; } int32 i = 0; // Iterate over the adapters and print their MAC addresses pAdapter = pAdapterAddresses; while (pAdapter && i < 4) { if (pAdapter->PhysicalAddressLength != 0) { info[i].slot[63] = '\0'; info[i].mac[23] = '\0'; memcpy(info[i].mac, pAdapter->PhysicalAddress, 8); wcstombs(info[i].slot, pAdapter->FriendlyName, 63); ++i; } pAdapter = pAdapter->Next; } free(pAdapterAddresses); WSACleanup(); return i; } void cpu_info_get(CpuInfo* info) { info->features = cpu_info_features(); cpu_info_cache(1, &info->cache[0]); cpu_info_cache(2, &info->cache[1]); cpu_info_cache(3, &info->cache[2]); cpu_info_cache(4, &info->cache[3]); SYSTEM_INFO sys_info; GetSystemInfo(&sys_info); info->thread_count = (byte) sys_info.dwNumberOfProcessors; info->page_size = (uint16) sys_info.dwPageSize; int32 cpuInfo[4] = { 0 }; __cpuid(cpuInfo, 0); memset(info->vendor, 0, sizeof(info->vendor)); *((int32 *) info->vendor) = cpuInfo[1]; *((int32 *) (info->vendor + 4)) = cpuInfo[3]; *((int32 *) (info->vendor + 8)) = cpuInfo[2]; info->vendor[12] = '\0'; __cpuid(cpuInfo, 0x80000002); memcpy(info->brand, cpuInfo, sizeof(cpuInfo)); __cpuid(cpuInfo, 0x80000003); memcpy(info->brand + 16, cpuInfo, sizeof(cpuInfo)); __cpuid(cpuInfo, 0x80000004); memcpy(info->brand + 32, cpuInfo, sizeof(cpuInfo)); info->brand[48] = '\0'; __cpuid(cpuInfo, 1); info->model = (cpuInfo[0] >> 4) & 0xF; info->family = (cpuInfo[0] >> 8) & 0xF; DWORD bufSize = sizeof(DWORD); HKEY hKey; long lError = RegOpenKeyExA( HKEY_LOCAL_MACHINE, "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", 0, KEY_READ, &hKey ); if (lError == ERROR_SUCCESS) { RegQueryValueExA(hKey, "~MHz", NULL, NULL, (LPBYTE) &(info->mhz), &bufSize); } RegCloseKey(hKey); } void os_info_get(OSInfo* info) { info->vendor[15] = '\0'; info->name[63] = '\0'; OSVERSIONINFOEXW version_info; memset(&version_info, 0, sizeof(OSVERSIONINFOEXW)); version_info.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEXW); NTSTATUS(WINAPI *RtlGetVersion)(OSVERSIONINFOEXW*) = (NTSTATUS(WINAPI *)(OSVERSIONINFOEXW*))GetProcAddress(GetModuleHandleW(L"ntdll.dll"), "RtlGetVersion"); if (RtlGetVersion != nullptr) { RtlGetVersion(&version_info); } memcpy(info->vendor, "Microsoft", sizeof("Microsoft")); memcpy(info->name, "Windows", sizeof("Windows")); info->major = version_info.dwMajorVersion; info->minor = version_info.dwMinorVersion; } void ram_info_get(RamInfo* info) { MEMORYSTATUSEX statex; statex.dwLength = sizeof(statex); GlobalMemoryStatusEx(&statex); info->memory = (uint32) (statex.ullTotalPhys / (1024 * 1024)); } RamChannelType ram_channel_info() { HRESULT hres; hres = CoInitializeEx(0, COINIT_MULTITHREADED); if (FAILED(hres)) { return RAM_CHANNEL_TYPE_FAILED; } hres = CoInitializeSecurity(NULL, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_DEFAULT, RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE, NULL); if (FAILED(hres)) { CoUninitialize(); return RAM_CHANNEL_TYPE_FAILED; } IWbemLocator *pLoc = NULL; hres = CoCreateInstance(CLSID_WbemLocator, 0, CLSCTX_INPROC_SERVER, IID_IWbemLocator, (LPVOID *)&pLoc); if (FAILED(hres)) { CoUninitialize(); return RAM_CHANNEL_TYPE_FAILED; } IWbemServices *pSvc = NULL; hres = pLoc->ConnectServer(_bstr_t(L"ROOT\\CIMV2"), NULL, NULL, 0, NULL, 0, 0, &pSvc); if (FAILED(hres)) { pLoc->Release(); CoUninitialize(); return RAM_CHANNEL_TYPE_FAILED; } hres = CoSetProxyBlanket(pSvc, RPC_C_AUTHN_WINNT, RPC_C_AUTHZ_NONE, NULL, RPC_C_AUTHN_LEVEL_CALL, RPC_C_IMP_LEVEL_IMPERSONATE, NULL, EOAC_NONE); if (FAILED(hres)) { pSvc->Release(); pLoc->Release(); CoUninitialize(); return RAM_CHANNEL_TYPE_FAILED; } IEnumWbemClassObject* pEnumerator = NULL; hres = pSvc->ExecQuery(bstr_t("WQL"), bstr_t("SELECT * FROM Win32_PhysicalMemory"), WBEM_FLAG_FORWARD_ONLY | WBEM_FLAG_RETURN_IMMEDIATELY, NULL, &pEnumerator); if (FAILED(hres)) { pSvc->Release(); pLoc->Release(); CoUninitialize(); return RAM_CHANNEL_TYPE_FAILED; } IWbemClassObject *pclsObj = NULL; ULONG uReturn = 0; int32 ram_module_count = 0; int32 dual_channel_capable = 0; while (pEnumerator) { hres = pEnumerator->Next(WBEM_INFINITE, 1, &pclsObj, &uReturn); if (uReturn == 0) break; VARIANT vtProp; hres = pclsObj->Get(L"BankLabel", 0, &vtProp, 0, 0); if (SUCCEEDED(hres)) { ++ram_module_count; if (wcscmp(vtProp.bstrVal, L"BANK 0") == 0 || wcscmp(vtProp.bstrVal, L"BANK 1") == 0) { dual_channel_capable = 1; } VariantClear(&vtProp); } pclsObj->Release(); } pSvc->Release(); pLoc->Release(); CoUninitialize(); if (ram_module_count == 1) { return RAM_CHANNEL_TYPE_SINGLE_CHANNEL; } else if (ram_module_count == 2 && dual_channel_capable) { return RAM_CHANNEL_TYPE_DUAL_CHANNEL; } else if (ram_module_count == 2 && !dual_channel_capable) { return RAM_CHANNEL_TYPE_CAN_UPGRADE; } else { return RAM_CHANNEL_TYPE_FAILED; } } uint32 gpu_info_get(GpuInfo* info) { IDXGIFactory *pFactory = NULL; IDXGIAdapter *pAdapter = NULL; DXGI_ADAPTER_DESC adapterDesc; HRESULT hr = CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&pFactory); if (FAILED(hr)) { return 0; } uint32 i = 0; while (pFactory->EnumAdapters(i, &pAdapter) != DXGI_ERROR_NOT_FOUND && i < 3) { hr = pAdapter->GetDesc(&adapterDesc); if (FAILED(hr)) { pAdapter->Release(); break; } wcstombs(info[i].name, adapterDesc.Description, 63); info[i].name[63] = '\0'; info[i].vram = (uint32) (adapterDesc.DedicatedVideoMemory / (1024 * 1024)); pAdapter->Release(); ++i; } pFactory->Release(); return i; } uint32 display_info_get(DisplayInfo* info) { DISPLAY_DEVICEA device; DEVMODEA mode; device.cb = sizeof(DISPLAY_DEVICEA); uint32 i = 0; while (EnumDisplayDevicesA(NULL, i, &device, 0)) { mode.dmSize = sizeof(mode); if (EnumDisplaySettingsA(device.DeviceName, ENUM_CURRENT_SETTINGS, &mode)) { str_copy_short(info[i].name, device.DeviceName); info[i].width = mode.dmPelsWidth; info[i].height = mode.dmPelsHeight; info[i].hz = mode.dmDisplayFrequency; info[i].is_primary = (bool) (device.StateFlags & DISPLAY_DEVICE_PRIMARY_DEVICE); } ++i; } return i; } bool is_dedicated_gpu_connected() { DISPLAY_DEVICEA displayDevice; displayDevice.cb = sizeof(DISPLAY_DEVICEA); for (int32 i = 0; EnumDisplayDevicesA(NULL, i, &displayDevice, 0); ++i) { if (displayDevice.StateFlags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP) { DISPLAY_DEVICEA gpuDevice; gpuDevice.cb = sizeof(DISPLAY_DEVICEA); if (EnumDisplayDevicesA(displayDevice.DeviceName, 0, &gpuDevice, 0)) { if (gpuDevice.DeviceID && (str_contains(gpuDevice.DeviceID, "PCI\\VEN_10DE") // Nvidia || str_contains(gpuDevice.DeviceID, "PCI\\VEN_1002") // AMD || str_contains(gpuDevice.DeviceID, "PCI\\VEN_8086") // Intel ) ) { return true; } } } } return false; } #endif