/** * Jingga * * @copyright Jingga * @license OMS License 2.0 * @version 1.0.0 * @link https://jingga.app */ #ifndef TOS_IMAGE_QOI_H #define TOS_IMAGE_QOI_H #include "../stdlib/Types.h" #include "../memory/RingMemory.h" #include "Image.h" #define QOI_OP_INDEX 0b00000000 #define QOI_OP_DIFF 0b01000000 #define QOI_OP_LUMA 0b10000000 #define QOI_OP_RUN 0b11000000 // @todo There is a HUGE step from here to QOI_OP_RGB this leaves room for more cases or using this data #define QOI_OP_RGB 0b11111110 #define QOI_OP_RGBA 0b11111111 #define QOI_MASK_2 0b11000000 #define QOI_COLOR_HASH(color) (color.r * 3 + color.g * 5 + color.b * 7 + color.a * 11) #define QOI_COLOR_HASH_2(color) ((((uint32)(color)) * 0x9E3779B1U) >> 26) #define QOI_HEADER_SIZE 9 // @question Do we really ever need int32 for width/height? struct QoiDescription { uint32 width; uint32 height; byte channels; byte colorspace; }; uint32 qoi_encode_size(QoiDescription* desc) { return desc->width * desc->height * (desc->channels + 1) + QOI_HEADER_SIZE; } int32 qoi_encode(const Image* image, byte* output) { int32 p = 0; *((uint32 *) output[p]) = SWAP_ENDIAN_LITTLE(desc->width); p += 4; *((uint32 *) output[p]) = SWAP_ENDIAN_LITTLE(desc->height); p += 4; // Channel count 1-4 requires 3 bits, colorspace requires 1 bit output[p++] = ((desc->channels - 1) << 1) | (desc->colorspace & 0x01);; v4_byte index[64]; memset(index, 0, sizeof(index)); v4_byte px_prev = {0, 0, 0, 255}; v4_byte px = px_prev; int32 px_len = desc->width * desc->height * desc->channels; int32 px_end = px_len - desc->channels; int32 channels = desc->channels; int32 run = 0; for (int32 px_pos = 0; px_pos < px_len; px_pos += channels) { memcpy(&px, &data[px_pos], channels * sizeof(byte)); if (px.v == px_prev.v) { ++run; if (run == 62 || px_pos == px_end) { output[p++] = QOI_OP_RUN | (run - 1); run = 0; } } else { if (run) { output[p++] = QOI_OP_RUN | (run - 1); run = 0; } int32 index_pos = QOI_COLOR_HASH(px) % 64; //int32 index_pos = QOI_COLOR_HASH_2(px); if (index[index_pos].v == px.v) { output[p++] = QOI_OP_INDEX | index_pos; } else { index[index_pos] = px; if (px.a == px_prev.a) { signed char vr = px.r - px_prev.r; signed char vg = px.g - px_prev.g; signed char vb = px.b - px_prev.b; signed char vg_r = vr - vg; signed char vg_b = vb - vg; if (vr > -3 && vr < 2 && vg > -3 && vg < 2 && vb > -3 && vb < 2 ) { output[p++] = QOI_OP_DIFF | (vr + 2) << 4 | (vg + 2) << 2 | (vb + 2); } else if (vg_r > -9 && vg_r < 8 && vg > -33 && vg < 32 && vg_b > -9 && vg_b < 8 ) { output[p++] = QOI_OP_LUMA | (vg + 32); output[p++] = (vg_r + 8) << 4 | (vg_b + 8); } else { output[p++] = QOI_OP_RGB; output[p++] = px.r; output[p++] = px.g; output[p++] = px.b; } } else { output[p++] = QOI_OP_RGBA; *((uint32 *) &output[p]) = SWAP_ENDIAN_LITTLE(px.val); p += 4; } } } px_prev = px; } return p; } uint32 qoi_decode_size(QoiDescription* desc, int32 channels) { return desc->width * desc->height * channels; } void qoi_decode(const byte* data, Image* image, int32 steps = 8) { int32 p = 0; uint32 width = SWAP_ENDIAN_LITTLE(*((uint32 *) &data[p])); p += 4; uint32 height = SWAP_ENDIAN_LITTLE(*((uint32 *) &data[p])); p += 4; // Channel count 1-4 requires 3 bits, colorspace requires 1 bit int32 colorspace = data[p] & 0x01; uint32 channels = ((data[p] > 1) & 0x07) + 1; uint32 px_len = width * height * channels; v4_byte px = {0, 0, 0, 255}; v4_byte index[64]; memset(index, 0, sizeof(index)); int32 run = 0; for (uint32 px_pos = 0; px_pos < px_len; px_pos += channels) { int32 b1 = data[p++]; if (b1 == QOI_OP_RGB) { px.r = data[p++]; px.g = data[p++]; px.b = data[p++]; } else if (b1 == QOI_OP_RGBA) { px.val = SWAP_ENDIAN_LITTLE(*((uint32 *) &data[p])); p += 4; } else if ((b1 & QOI_MASK_2) == QOI_OP_INDEX) { px = index[b1]; } else if ((b1 & QOI_MASK_2) == QOI_OP_DIFF) { px.r += ((b1 >> 4) & 0x03) - 2; px.g += ((b1 >> 2) & 0x03) - 2; px.b += ( b1 & 0x03) - 2; } else if ((b1 & QOI_MASK_2) == QOI_OP_LUMA) { int32 b2 = data[p++]; int32 vg = (b1 & 0x3f) - 32; px.r += vg - 8 + ((b2 >> 4) & 0x0f); px.g += vg; px.b += vg - 8 + (b2 & 0x0f); } else if ((b1 & QOI_MASK_2) == QOI_OP_RUN) { run = (b1 & 0x3f); if (channels == 4) { uint32 px_little_endian = SWAP_ENDIAN_LITTLE(px.val); int32 pixel_step_size = steps * 4; int32 i = 0; if (steps == 16) { __m512i simd_value = _mm512_set1_epi32(px_little_endian); for(; i <= run - steps; i += steps, px_pos += pixel_step_size) { _mm512_storeu_si512((__m512i *) &output[px_pos], simd_value); } } else if (steps >= 8) { __m256i simd_value = _mm256_set1_epi32(px_little_endian); for (; i <= run - steps; i += steps, px_pos += pixel_step_size) { _mm256_storeu_si256((__m256i *) &output[px_pos], simd_value); } } else if (steps >= 4) { __m128i simd_value = _mm_set1_epi32(px_little_endian); for(; i <= run - steps; i += steps, px_pos += pixel_step_size) { _mm_storeu_si128((__m128i *) &output[px_pos], simd_value); } } for (; i < run; ++i) { output[px_pos] = px_little_endian; px_pos += channels; } } else if (channels == 3) { for (int32 i = 0; i < run; ++i) { output[px_pos++] = px.r; output[px_pos++] = px.g; output[px_pos++] = px.b; } } else if (channels == 1) { memset(&output[px_pos], px.r, run * sizeof(byte)); px_pos += run; } // Correction, since the loop increments by channels count as well px_pos -= channels; index[QOI_COLOR_HASH(px) % 64] = px; //index[QOI_COLOR_HASH_2(px)] = px; continue; } index[QOI_COLOR_HASH(px) % 64] = px; //index[QOI_COLOR_HASH_2(px)] = px; memcpy(&output[px_pos], &px, channels * sizeof(byte)); } } #endif