/** * Jingga * * @copyright Jingga * @license OMS License 2.0 * @version 1.0.0 * @link https://jingga.app */ #ifndef TOS_STDLIB_HASH_MAP_H #define TOS_STDLIB_HASH_MAP_H #include "Types.h" #include "../hash/GeneralHash.h" #include "../memory/RingMemory.h" #include "../memory/BufferMemory.h" #include "../memory/ChunkMemory.h" #include "../utils/StringUtils.h" // WARNING Length of 28 used to ensure perfect padding with element_id and key #define HASH_MAP_MAX_KEY_LENGTH 28 ///////////////////////////// // string key ///////////////////////////// struct HashEntryInt32 { uint32 element_id; char key[HASH_MAP_MAX_KEY_LENGTH]; HashEntryInt32* next; int32 value; }; struct HashEntryInt64 { uint32 element_id; char key[HASH_MAP_MAX_KEY_LENGTH]; HashEntryInt64* next; int64 value; }; struct HashEntryUIntPtr { uint32 element_id; char key[HASH_MAP_MAX_KEY_LENGTH]; HashEntryUIntPtr* next; uintptr_t value; }; struct HashEntryVoidP { uint32 element_id; char key[HASH_MAP_MAX_KEY_LENGTH]; HashEntryVoidP* next; void* value; }; struct HashEntryFloat { uint32 element_id; char key[HASH_MAP_MAX_KEY_LENGTH]; HashEntryFloat* next; f32 value; }; struct HashEntryStr { uint32 element_id; char key[HASH_MAP_MAX_KEY_LENGTH]; HashEntryStr* next; char value[HASH_MAP_MAX_KEY_LENGTH]; }; struct HashEntry { uint32 element_id; char key[HASH_MAP_MAX_KEY_LENGTH]; HashEntry* next; byte* value; }; ///////////////////////////// // int key ///////////////////////////// struct HashEntryInt32KeyInt32 { uint32 element_id; int32 key; HashEntryInt32KeyInt32* next; int32 value; }; struct HashEntryInt64KeyInt32 { uint32 element_id; int32 key; HashEntryInt64KeyInt32* next; int64 value; }; struct HashEntryUIntPtrKeyInt32 { uint32 element_id; int32 key; HashEntryUIntPtrKeyInt32* next; uintptr_t value; }; struct HashEntryVoidPKeyInt32 { uint32 element_id; int32 key; HashEntryVoidPKeyInt32* next; void* value; }; struct HashEntryFloatKeyInt32 { uint32 element_id; int32 key; HashEntryFloatKeyInt32* next; f32 value; }; struct HashEntryStrKeyInt32 { uint32 element_id; int32 key; HashEntryStrKeyInt32* next; char value[HASH_MAP_MAX_KEY_LENGTH]; }; struct HashEntryKeyInt32 { uint32 element_id; int32 key; HashEntryKeyInt32* next; byte* value; }; struct HashMap { void** table; ChunkMemory buf; }; // WARNING: element_size = element size + remaining HashEntry data size void hashmap_create(HashMap* hm, int32 count, int32 element_size, RingMemory* ring) { byte* data = ring_get_memory( ring, count * (sizeof(void *) + element_size) + CEIL_DIV(count, 64) * sizeof(hm->buf.free), 0, true ); hm->table = (void **) data; chunk_init(&hm->buf, data + sizeof(void *) * count, count, element_size, 8); LOG_LEVEL_2("Created HashMap for %n elements with %n B per element = %n B", {{LOG_DATA_INT32, &count}, {LOG_DATA_INT32, &element_size}, {LOG_DATA_UINT64, &hm->buf.size}}); } // WARNING: element_size = element size + remaining HashEntry data size void hashmap_create(HashMap* hm, int32 count, int32 element_size, BufferMemory* buf) { byte* data = buffer_get_memory( buf, count * (sizeof(void *) + element_size) + CEIL_DIV(count, 64) * sizeof(hm->buf.free) ); hm->table = (void **) data; chunk_init(&hm->buf, data + sizeof(void *) * count, count, element_size, 8); LOG_LEVEL_2("Created HashMap for %n elements with %n B per element = %n B", {{LOG_DATA_INT32, &count}, {LOG_DATA_INT32, &element_size}, {LOG_DATA_UINT64, &hm->buf.size}}); } // WARNING: element_size = element size + remaining HashEntry data size void hashmap_create(HashMap* hm, int32 count, int32 element_size, byte* buf) { hm->table = (void **) buf; chunk_init(&hm->buf, buf + sizeof(void *) * count, count, element_size, 8); LOG_LEVEL_2("Created HashMap for %n elements with %n B per element = %n B", {{LOG_DATA_INT32, &count}, {LOG_DATA_INT32, &element_size}, {LOG_DATA_UINT64, &hm->buf.size}}); } // Calculates how large a hashmap will be inline int64 hashmap_size(int count, int32 element_size) { return count * sizeof(element_size) // table + count * element_size // elements + sizeof(uint64) * CEIL_DIV(count, 64); // free } inline int64 hashmap_size(const HashMap* hm) { return hm->buf.count * sizeof(hm->table) + hm->buf.size; } ///////////////////////////// // string key ///////////////////////////// void hashmap_insert(HashMap* hm, const char* key, int32 value) { uint64 index = hash_djb2(key) % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryInt32* entry = (HashEntryInt32 *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; // @performance Do we really need strncpy? Either use memcpy or strcpy?! Same goes for all the other cases below strncpy(entry->key, key, HASH_MAP_MAX_KEY_LENGTH); entry->key[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; entry->value = value; entry->next = NULL; if (hm->table[index]) { HashEntryInt32* tmp = (HashEntryInt32 *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, const char* key, int64 value) { uint64 index = hash_djb2(key) % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryInt64* entry = (HashEntryInt64 *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; strncpy(entry->key, key, HASH_MAP_MAX_KEY_LENGTH); entry->key[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; entry->value = value; entry->next = NULL; if (hm->table[index]) { HashEntryInt64* tmp = (HashEntryInt64 *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, const char* key, uintptr_t value) { uint64 index = hash_djb2(key) % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryUIntPtr* entry = (HashEntryUIntPtr *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; strncpy(entry->key, key, HASH_MAP_MAX_KEY_LENGTH); entry->key[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; entry->value = value; entry->next = NULL; if (hm->table[index]) { HashEntryUIntPtr* tmp = (HashEntryUIntPtr *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, const char* key, void* value) { uint64 index = hash_djb2(key) % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryVoidP* entry = (HashEntryVoidP *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; strncpy(entry->key, key, HASH_MAP_MAX_KEY_LENGTH); entry->key[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; entry->value = value; entry->next = NULL; if (hm->table[index]) { HashEntryVoidP* tmp = (HashEntryVoidP *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, const char* key, f32 value) { uint64 index = hash_djb2(key) % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryFloat* entry = (HashEntryFloat *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; strncpy(entry->key, key, HASH_MAP_MAX_KEY_LENGTH); entry->key[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; entry->value = value; entry->next = NULL; if (hm->table[index]) { HashEntryFloat* tmp = (HashEntryFloat *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, const char* key, const char* value) { uint64 index = hash_djb2(key) % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryStr* entry = (HashEntryStr *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; strncpy(entry->key, key, HASH_MAP_MAX_KEY_LENGTH); entry->key[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; strncpy(entry->value, value, HASH_MAP_MAX_KEY_LENGTH); entry->value[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; entry->next = NULL; if (hm->table[index]) { HashEntryStr* tmp = (HashEntryStr *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } HashEntry* hashmap_insert(HashMap* hm, const char* key, byte* value) { uint64 index = hash_djb2(key) % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntry* entry = (HashEntry *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; entry->value = (byte *) entry + sizeof(HashEntry); strncpy(entry->key, key, HASH_MAP_MAX_KEY_LENGTH); entry->key[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; memcpy(entry->value, value, hm->buf.chunk_size - sizeof(HashEntry)); entry->next = NULL; if (hm->table[index]) { HashEntry* tmp = (HashEntry *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } return entry; } HashEntry* hashmap_reserve(HashMap* hm, const char* key) { uint64 index = hash_djb2(key) % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntry* entry = (HashEntry *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; entry->value = (byte *) entry + sizeof(HashEntry); strncpy(entry->key, key, HASH_MAP_MAX_KEY_LENGTH); entry->key[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; entry->next = NULL; if (hm->table[index]) { HashEntry* tmp = (HashEntry *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } return entry; } // Returns existing element or element to be filled HashEntry* hashmap_get_reserve(HashMap* hm, const char* key) { uint64 index = hash_djb2(key) % hm->buf.count; HashEntry* entry = (HashEntry *) hm->table[index]; while (entry != NULL) { if (str_compare(entry->key, key, HASH_MAP_MAX_KEY_LENGTH) == 0) { DEBUG_MEMORY_READ((uintptr_t) entry, sizeof(HashEntry)); return entry; } if (((HashEntry *) entry->next) == NULL) { break; } entry = (HashEntry *) entry->next; } int32 element = chunk_reserve(&hm->buf, 1); HashEntry* entry_new = (HashEntry *) chunk_get_element(&hm->buf, element, true); entry_new->element_id = element; entry_new->value = (byte *) entry_new + sizeof(HashEntry); strncpy(entry_new->key, key, HASH_MAP_MAX_KEY_LENGTH); entry_new->key[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; if (entry) { entry->next = entry_new; } else { hm->table[index] = entry_new; } return entry_new; } HashEntry* hashmap_get_entry(const HashMap* hm, const char* key) { uint64 index = hash_djb2(key) % hm->buf.count; HashEntry* entry = (HashEntry *) hm->table[index]; while (entry != NULL) { if (str_compare(entry->key, key, HASH_MAP_MAX_KEY_LENGTH) == 0) { DEBUG_MEMORY_READ((uintptr_t) entry, sizeof(HashEntry)); return entry; } entry = (HashEntry *) entry->next; } return NULL; } // This function only saves one step (omission of the hash function) // The reason for this is in some cases we can use compile time hashing HashEntry* hashmap_get_entry(const HashMap* hm, const char* key, uint64 hash) { hash %= hm->buf.count; HashEntry* entry = (HashEntry *) hm->table[hash]; while (entry != NULL) { if (str_compare(entry->key, key, HASH_MAP_MAX_KEY_LENGTH) == 0) { DEBUG_MEMORY_READ((uintptr_t) entry, sizeof(HashEntry)); return entry; } entry = (HashEntry *) entry->next; } return NULL; } // @performance If we had a doubly linked list we could delete keys much easier // However that would make insertion slower // Maybe we create a nother hashmap that is doubly linked void hashmap_remove(HashMap* hm, const char* key) { uint64 index = hash_djb2(key) % hm->buf.count; HashEntry* entry = (HashEntry *) hm->table[index]; HashEntry* prev = NULL; while (entry != NULL) { if (str_compare(entry->key, key, HASH_MAP_MAX_KEY_LENGTH) == 0) { if (prev == NULL) { hm->table[index] = entry->next; } else { prev->next = entry->next; } chunk_free_elements(&hm->buf, entry->element_id); return; } prev = entry; entry = entry->next; } } ///////////////////////////// // int key ///////////////////////////// void hashmap_insert(HashMap* hm, int32 key, int32 value) { uint64 index = key % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryInt32KeyInt32* entry = (HashEntryInt32KeyInt32 *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; entry->key = key; entry->value = value; entry->next = NULL; if (hm->table[index]) { HashEntryInt32KeyInt32* tmp = (HashEntryInt32KeyInt32 *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, int32 key, int64 value) { uint64 index = key % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryInt64KeyInt32* entry = (HashEntryInt64KeyInt32 *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; entry->key = key; entry->value = value; entry->next = NULL; if (hm->table[index]) { HashEntryInt64KeyInt32* tmp = (HashEntryInt64KeyInt32 *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, int32 key, uintptr_t value) { uint64 index = key % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryUIntPtrKeyInt32* entry = (HashEntryUIntPtrKeyInt32 *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; entry->key = key; entry->value = value; entry->next = NULL; if (hm->table[index]) { HashEntryUIntPtrKeyInt32* tmp = (HashEntryUIntPtrKeyInt32 *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, int32 key, void* value) { uint64 index = key % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryVoidPKeyInt32* entry = (HashEntryVoidPKeyInt32 *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; entry->key = key; entry->value = value; entry->next = NULL; if (hm->table[index]) { HashEntryVoidPKeyInt32* tmp = (HashEntryVoidPKeyInt32 *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, int32 key, f32 value) { uint64 index = key % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryFloatKeyInt32* entry = (HashEntryFloatKeyInt32 *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; entry->key = key; entry->value = value; entry->next = NULL; if (hm->table[index]) { HashEntryFloatKeyInt32* tmp = (HashEntryFloatKeyInt32 *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, int32 key, const char* value) { uint64 index = key % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryStrKeyInt32* entry = (HashEntryStrKeyInt32 *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; entry->key = key; strncpy(entry->value, value, HASH_MAP_MAX_KEY_LENGTH); entry->value[HASH_MAP_MAX_KEY_LENGTH - 1] = '\0'; entry->next = NULL; if (hm->table[index]) { HashEntryStrKeyInt32* tmp = (HashEntryStrKeyInt32 *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } void hashmap_insert(HashMap* hm, int32 key, byte* value) { uint64 index = key % hm->buf.count; int32 element = chunk_reserve(&hm->buf, 1); HashEntryKeyInt32* entry = (HashEntryKeyInt32 *) chunk_get_element(&hm->buf, element, true); entry->element_id = element; entry->key = key; entry->value = (byte *) entry + sizeof(HashEntryKeyInt32); memcpy(entry->value, value, hm->buf.chunk_size - sizeof(HashEntryKeyInt32)); entry->next = NULL; if (hm->table[index]) { HashEntryKeyInt32* tmp = (HashEntryKeyInt32 *) hm->table[index]; while(tmp->next) { tmp = tmp->next; } tmp->next = entry; } else { hm->table[index] = entry; } } HashEntryKeyInt32* hashmap_get_entry(const HashMap* hm, int32 key) { uint64 index = key % hm->buf.count; HashEntryKeyInt32* entry = (HashEntryKeyInt32 *) hm->table[index]; while (entry != NULL) { if (entry->key == key) { DEBUG_MEMORY_READ((uintptr_t) entry, sizeof(HashEntryKeyInt32)); return entry; } entry = (HashEntryKeyInt32 *) entry->next; } return NULL; } // This function only saves one step (omission of the hash function) // The reason for this is in some cases we can use compile time hashing HashEntryKeyInt32* hashmap_get_entry(const HashMap* hm, int32 key, uint64 hash) { hash %= hm->buf.count; HashEntryKeyInt32* entry = (HashEntryKeyInt32 *) hm->table[hash]; while (entry != NULL) { if (entry->key == key) { DEBUG_MEMORY_READ((uintptr_t) entry, sizeof(HashEntryKeyInt32)); return entry; } entry = (HashEntryKeyInt32 *) entry->next; } return NULL; } // @performance If we had a doubly linked list we could delete keys much easier // However that would make insertion slower // Maybe we create a nother hashmap that is doubly linked void hashmap_remove(HashMap* hm, int32 key) { uint64 index = key % hm->buf.count; HashEntryKeyInt32* entry = (HashEntryKeyInt32 *) hm->table[index]; HashEntryKeyInt32* prev = NULL; while (entry != NULL) { if (entry->key == key) { if (prev == NULL) { hm->table[index] = entry->next; } else { prev->next = entry->next; } chunk_free_elements(&hm->buf, entry->element_id); return; } prev = entry; entry = entry->next; } } inline int32 hashmap_value_size(const HashMap* hm) { return (uint32) ( hm->buf.chunk_size - sizeof(uint32) // element id - sizeof(char) * HASH_MAP_MAX_KEY_LENGTH // key - sizeof(uintptr_t) // next pointer ); } // @question Shouldn't we also store the hashmap count, chunk size etc? Currently not done and expected to be correctly initialized. inline int64 hashmap_dump(const HashMap* hm, byte* data) { *((uint32 *) data) = SWAP_ENDIAN_LITTLE(hm->buf.count); data += sizeof(hm->buf.count); // Dump the table content where the elements are relative indices/pointers for (int32 i = 0; i < hm->buf.count; ++i) { *((uint64 *) data) = hm->table[i] ? SWAP_ENDIAN_LITTLE((uintptr_t) hm->table[i] - (uintptr_t) hm->buf.memory) : 0ULL; } data += sizeof(uint64) * hm->buf.count; // @bug what if Int32 key? int32 value_size = hashmap_value_size(hm); // Dumb hash map content = buffer memory // Since we are using ChunkMemory we can be smart about it and iterate the chunk memory instead of performing pointer chasing int32 free_index = 0; int32 bit_index = 0; for (uint32 i = 0; i < hm->buf.count; ++i) { if (hm->buf.free[free_index] & (1ULL << bit_index)) { HashEntry* entry = (HashEntry *) chunk_get_element((ChunkMemory *) &hm->buf, i); // element_id *((uint32 *) data) = SWAP_ENDIAN_LITTLE(entry->element_id); data += sizeof(entry->element_id); // key memcpy(data, entry->key, sizeof(entry->key)); data += sizeof(entry->key); // next pointer if (entry->next) { *((uint64 *) data) = SWAP_ENDIAN_LITTLE((uintptr_t) entry->next - (uintptr_t) hm->buf.memory); } else { memset(data, 0, sizeof(uint64)); } data += sizeof(uint64); // We just assume that 4 or 8 bytes = int -> endian handling if (value_size == 4) { *((int32 *) data) = SWAP_ENDIAN_LITTLE(((HashEntryInt32 *) entry)->value); } else if (value_size == 8) { *((int64 *) data) = SWAP_ENDIAN_LITTLE(((HashEntryInt64 *) entry)->value); } else { memcpy(data, entry->value, value_size); } data += value_size; } else { // No entry defined -> NULL memset(data, 0, hm->buf.chunk_size); data += hm->buf.chunk_size; } ++bit_index; if (bit_index > 63) { bit_index = 0; ++free_index; } } // dump free array memcpy(data, hm->buf.free, sizeof(uint64) * CEIL_DIV(hm->buf.count, 64)); return sizeof(hm->buf.count) // hash map count = buffer count + hm->buf.count * sizeof(uint64) // table content + hm->buf.size; // hash map content + free array } // WARNING: Requires hashmap_create first inline int64 hashmap_load(HashMap* hm, const byte* data) { uint64 count = SWAP_ENDIAN_LITTLE(*((uint32 *) data)); data += sizeof(uint32); // Load the table content for (uint32 i = 0; i < count; ++i) { uint64 offset = SWAP_ENDIAN_LITTLE(*((uint64 *) data)); data += sizeof(offset); // the first element has no offset! hm->table[i] = offset || i == 0 ? hm->buf.memory + offset : NULL; } // This loop here is why it is important to already have an initialized hashmap // @question Do we maybe want to change this and not require an initalized hashmap? memcpy(hm->buf.memory, data, hm->buf.size); data += hm->buf.chunk_size * hm->buf.count; // @question don't we have to possibly endian swap check the free array as well? memcpy(hm->buf.free, data, sizeof(uint64) * CEIL_DIV(hm->buf.count, 64)); // @bug what if Int32 key? int32 value_size = hashmap_value_size(hm); // Switch endian AND turn offsets to pointers int32 chunk_id = 0; chunk_iterate_start(&hm->buf, chunk_id) HashEntry* entry = (HashEntry *) chunk_get_element((ChunkMemory *) &hm->buf, chunk_id); // element id entry->element_id = SWAP_ENDIAN_LITTLE(entry->element_id); // key is already loaded with the memcpy // @question Do we even want to use memcpy? We are re-checking all the values here anyways // next pointer if (entry->next) { entry->next = (HashEntry *) (hm->buf.memory + SWAP_ENDIAN_LITTLE((uint64) entry->next)); } if (value_size == 4) { ((HashEntryInt32 *) entry)->value = SWAP_ENDIAN_LITTLE(((HashEntryInt32 *) entry)->value); } else if (value_size == 8) { ((HashEntryInt64 *) entry)->value = SWAP_ENDIAN_LITTLE(((HashEntryInt64 *) entry)->value); } chunk_iterate_end; LOG_LEVEL_2("Loaded HashMap: %n B", {{LOG_DATA_UINT64, &hm->buf.size}}); // How many bytes was read from data return sizeof(hm->buf.count) // hash map count = buffer count + hm->buf.count * sizeof(uint64) // table content + hm->buf.size; } #endif