#ifndef HASH_SHA_256_H #define HASH_SHA_256_H #include #include #ifdef __cplusplus extern "C" { #endif // Licensing Information // // Except as otherwise noted (below and/or in individual files), this project is licensed under the Unlicense // (https://opensource.org/licenses/unlicense) or the Zero Clause BSD license (https://opensource.org/licenses/0bsd), at // your option. The Unlicense // // This is free and unencumbered software released into the public domain. // // Anyone is free to copy, modify, publish, use, compile, sell, or distribute this software, either in source code form // or as a compiled binary, for any purpose, commercial or non-commercial, and by any means. // // In jurisdictions that recognize copyright laws, the author or authors of this software dedicate any and all copyright // interest in the software to the public domain. We make this dedication for the benefit of the public at large and to // the detriment of our heirs and successors. We intend this dedication to be an overt act of relinquishment in // perpetuity of all present and future rights to this software under copyright law. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS BE // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. // // For more information, please refer to http://unlicense.org // Zero Clause BSD License // // © 2021 Alain Mosnier // // Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby // granted. // // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, // INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN // AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR // PERFORMANCE OF THIS SOFTWARE. /* * @brief Size of the SHA-256 sum. This times eight is 256 bits. */ #define SIZE_OF_SHA_256_HASH 32 /* * @brief Size of the chunks used for the calculations. * * @note This should mostly be ignored by the user, although when using the streaming API, it has an impact for * performance. Add chunks whose size is a multiple of this, and you will avoid a lot of superfluous copying in RAM! */ #define SIZE_OF_SHA_256_CHUNK 64 #define TOTAL_LEN_LEN 8 /* * @brief The opaque SHA-256 type, that should be instantiated when using the streaming API. * * @note Although the details are exposed here, in order to make instantiation easy, you should refrain from directly * accessing the fields, as they may change in the future. */ struct Sha_256 { uint8_t *hash; uint8_t chunk[SIZE_OF_SHA_256_CHUNK]; uint8_t *chunk_pos; size_t space_left; size_t total_len; uint32_t h[8]; }; static inline uint32_t right_rot(uint32_t value, unsigned int count) { /* * Defined behaviour in standard C for all count where 0 < count < 32, which is what we need here. */ return value >> count | value << (32 - count); } static inline void consume_chunk(uint32_t *h, const uint8_t *p) { unsigned i, j; uint32_t ah[8]; /* Initialize working variables to current hash value: */ for (i = 0; i < 8; i++) ah[i] = h[i]; /* * The w-array is really w[64], but since we only need 16 of them at a time, we save stack by * calculating 16 at a time. * * This optimization was not there initially and the rest of the comments about w[64] are kept in their * initial state. */ /* * create a 64-entry message schedule array w[0..63] of 32-bit words (The initial values in w[0..63] * don't matter, so many implementations zero them here) copy chunk into first 16 words w[0..15] of the * message schedule array */ uint32_t w[16]; /* Compression function main loop: */ for (i = 0; i < 4; i++) { for (j = 0; j < 16; j++) { if (i == 0) { w[j] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 | (uint32_t) p[2] << 8 | (uint32_t) p[3]; p += 4; } else { /* Extend the first 16 words into the remaining 48 words w[16..63] of the * message schedule array: */ const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^ (w[(j + 1) & 0xf] >> 3); const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^ right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10); w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1; } const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25); const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]); /* * Initialize array of round constants: * (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311): */ static const uint32_t k[] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}; const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j]; const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22); const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]); const uint32_t temp2 = s0 + maj; ah[7] = ah[6]; ah[6] = ah[5]; ah[5] = ah[4]; ah[4] = ah[3] + temp1; ah[3] = ah[2]; ah[2] = ah[1]; ah[1] = ah[0]; ah[0] = temp1 + temp2; } } /* Add the compressed chunk to the current hash value: */ for (i = 0; i < 8; i++) h[i] += ah[i]; } /* * @brief Initialize a SHA-256 streaming calculation. * @param sha_256 A pointer to a SHA-256 structure. * @param hash Hash array, where the result will be delivered. * * @note If all of the data you are calculating the hash value on is not available in a contiguous buffer in memory, * this is where you should start. Instantiate a SHA-256 structure, for instance by simply declaring it locally, make * your hash buffer available, and invoke this function. Once a SHA-256 hash has been calculated (see further below) a * SHA-256 structure can be initialized again for the next calculation. * * @note If either of the passed pointers is NULL, the results are unpredictable. */ void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH]) { sha_256->hash = hash; sha_256->chunk_pos = sha_256->chunk; sha_256->space_left = SIZE_OF_SHA_256_CHUNK; sha_256->total_len = 0; /* * Initialize hash values (first 32 bits of the fractional parts of the square roots of the first 8 primes * 2..19): */ sha_256->h[0] = 0x6a09e667; sha_256->h[1] = 0xbb67ae85; sha_256->h[2] = 0x3c6ef372; sha_256->h[3] = 0xa54ff53a; sha_256->h[4] = 0x510e527f; sha_256->h[5] = 0x9b05688c; sha_256->h[6] = 0x1f83d9ab; sha_256->h[7] = 0x5be0cd19; } /* * @brief Stream more input data for an on-going SHA-256 calculation. * @param sha_256 A pointer to a previously initialized SHA-256 structure. * @param data Pointer to the data to be added to the calculation. * @param len Length of the data to add, in byte. * * @note This function may be invoked an arbitrary number of times between initialization and closing, but the maximum * data length is limited by the SHA-256 algorithm: the total number of bits (i.e. the total number of bytes times * eight) must be representable by a 64-bit unsigned integer. While that is not a practical limitation, the results are * unpredictable if that limit is exceeded. * * @note This function may be invoked on empty data (zero length), although that obviously will not add any data. * * @note If either of the passed pointers is NULL, the results are unpredictable. */ void sha_256_write(struct Sha_256 *sha_256, const void *data, size_t len) { sha_256->total_len += len; const uint8_t *p = (uint8_t *) data; while (len > 0) { /* * If the input chunks have sizes that are multiples of the calculation chunk size, no copies are * necessary. We operate directly on the input data instead. */ if (sha_256->space_left == SIZE_OF_SHA_256_CHUNK && len >= SIZE_OF_SHA_256_CHUNK) { consume_chunk(sha_256->h, p); len -= SIZE_OF_SHA_256_CHUNK; p += SIZE_OF_SHA_256_CHUNK; continue; } /* General case, no particular optimization. */ const size_t consumed_len = len < sha_256->space_left ? len : sha_256->space_left; memcpy(sha_256->chunk_pos, p, consumed_len); sha_256->space_left -= consumed_len; len -= consumed_len; p += consumed_len; if (sha_256->space_left == 0) { consume_chunk(sha_256->h, sha_256->chunk); sha_256->chunk_pos = sha_256->chunk; sha_256->space_left = SIZE_OF_SHA_256_CHUNK; } else { sha_256->chunk_pos += consumed_len; } } } /* * @brief Conclude a SHA-256 streaming calculation, making the hash value available. * @param sha_256 A pointer to a previously initialized SHA-256 structure. * @return Pointer to the hash array, where the result is delivered. * * @note After this function has been invoked, the result is available in the hash buffer that initially was provided. A * pointer to the hash value is returned for convenience, but you should feel free to ignore it: it is simply a pointer * to the first byte of your initially provided hash array. * * @note If the passed pointer is NULL, the results are unpredictable. * * @note Invoking this function for a calculation with no data (the writing function has never been invoked, or it only * has been invoked with empty data) is legal. It will calculate the SHA-256 value of the empty string. */ uint8_t *sha_256_close(struct Sha_256 *sha_256) { uint8_t *pos = sha_256->chunk_pos; size_t space_left = sha_256->space_left; uint32_t *const h = sha_256->h; /* * The current chunk cannot be full. Otherwise, it would already have be consumed. I.e. there is space left for * at least one byte. The next step in the calculation is to add a single one-bit to the data. */ *pos++ = 0x80; --space_left; /* * Now, the last step is to add the total data length at the end of the last chunk, and zero padding before * that. But we do not necessarily have enough space left. If not, we pad the current chunk with zeroes, and add * an extra chunk at the end. */ if (space_left < TOTAL_LEN_LEN) { memset(pos, 0x00, space_left); consume_chunk(h, sha_256->chunk); pos = sha_256->chunk; space_left = SIZE_OF_SHA_256_CHUNK; } const size_t left = space_left - TOTAL_LEN_LEN; memset(pos, 0x00, left); pos += left; size_t len = sha_256->total_len; pos[7] = (uint8_t) (len << 3); len >>= 5; int i; for (i = 6; i >= 0; --i) { pos[i] = (uint8_t) len; len >>= 8; } consume_chunk(h, sha_256->chunk); /* Produce the final hash value (big-endian): */ int j; uint8_t *const hash = sha_256->hash; for (i = 0, j = 0; i < 8; i++) { hash[j++] = (uint8_t) (h[i] >> 24); hash[j++] = (uint8_t) (h[i] >> 16); hash[j++] = (uint8_t) (h[i] >> 8); hash[j++] = (uint8_t) h[i]; } return sha_256->hash; } /* * @brief The simple SHA-256 calculation function. * @param hash Hash array, where the result is delivered. * @param input Pointer to the data the hash shall be calculated on. * @param len Length of the input data, in byte. * * @note If all of the data you are calculating the hash value on is available in a contiguous buffer in memory, this is * the function you should use. * * @note If either of the passed pointers is NULL, the results are unpredictable. */ void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const void *input, size_t len) { struct Sha_256 sha_256; sha_256_init(&sha_256, hash); sha_256_write(&sha_256, input, len); (void) sha_256_close(&sha_256); } #undef TOTAL_LEN_LEN #ifdef __cplusplus } #endif #endif