/** * Jingga * * @copyright Jingga * @license OMS License 2.0 * @version 1.0.0 * @link https://jingga.app */ #ifndef COMS_UTILS_BIT_H #define COMS_UTILS_BIT_H //#include #include "../stdlib/Types.h" #include "../architecture/Intrinsics.h" // @todo Replace many of these functions with intrinsic functions // This file can remain but the callers should get adjusted // Obviously we would have to check at runtime if ABM is supported // Left to right (big endian) // "bits" refers to the bits of the data type (e.g. 8, 16, 32, 64) #define IS_BIT_SET_L2R(num, pos, bits) ((bool) ((num) & (1 << ((bits - 1) - (pos))))) #define BIT_SET_L2R(num, pos, bits) ((num) | (1U << ((bits - 1) - (pos)))) #define BIT_UNSET_L2R(num, pos, bits) ((num) & ~(1U << ((bits - 1) - (pos)))) #define BIT_FLIP_L2R(num, pos, bits) ((num) ^ (1U << ((bits - 1) - (pos)))) #define BIT_SET_TO_L2R(num, pos, x, bits) (((num) & ~((uint32_t)(1) << ((bits) - 1 - (pos)))) | (((uint32_t)(x) & 1U) << ((bits) - 1 - (pos)))) #define BITS_GET_8_L2R(num, pos, to_read) (((num) >> (8 - (pos) - (to_read))) & ((1U << (to_read)) - 1)) #define BITS_GET_16_L2R(num, pos, to_read) (((num) >> (16 - (pos) - (to_read))) & ((1U << (to_read)) - 1)) #define BITS_GET_32_L2R(num, pos, to_read) (((num) >> (32 - (pos) - (to_read))) & ((1U << (to_read)) - 1)) #define BITS_GET_64_L2R(num, pos, to_read) (((num) >> (64 - (pos) - (to_read))) & ((1ULL << (to_read)) - 1)) // Merges an array of bytes as an int value (16bit, 32bit, 64bit) // Depending on the endianness of the system you could simply cast the array #define BYTES_MERGE_2_L2R(arr) (((arr)[0] << 8) | (arr)[1]) #define BYTES_MERGE_4_L2R(arr) (((arr)[0] << 24) | ((arr)[1] << 16) | ((arr)[2] << 8) | (arr)[3]) #define BYTES_MERGE_8_L2R(arr) (((uint64_t)(arr)[0] << 56) | ((uint64_t)(arr)[1] << 48) | ((uint64_t)(arr)[2] << 40) | ((uint64_t)(arr)[3] << 32) | ((uint64_t)(arr)[4] << 24) | ((uint64_t)(arr)[5] << 16) | ((uint64_t)(arr)[6] << 8) | ((uint64_t)(arr)[7])) // Right to left (little endian) #define IS_BIT_SET_R2L(num, pos) ((bool) ((num) & (1 << (pos)))) #define IS_BIT_SET_64_R2L(num, pos) ((bool) ((num) & (1ULL << (pos)))) #define BIT_SET_R2L(num, pos) ((num) | ((uint32) 1 << (pos))) #define BIT_UNSET_R2L(num, pos) ((num) & ~((uint32) 1 << (pos))) #define BIT_FLIP_R2L(num, pos) ((num) ^ ((uint32) 1 << (pos))) #define BIT_SET_TO_R2L(num, pos, x) (((num) & ~((uint32_t)(1) << (pos))) | ((uint32_t)(x) << (pos))) // @performance Try to use this version over the L2R version for performance reasons #define BITS_GET_8_R2L(num, pos, to_read) (((num) >> (pos)) & ((1U << (to_read)) - 1)) #define BITS_GET_16_R2L(num, pos, to_read) (((num) >> (pos)) & ((1U << (to_read)) - 1)) #define BITS_GET_32_R2L(num, pos, to_read) (((num) >> (pos)) & ((1U << (to_read)) - 1)) #define BITS_GET_64_R2L(num, pos, to_read) (((num) >> (pos)) & ((1ULL << (to_read)) - 1)) // Merges an array of bytes as an int value (16bit, 32bit, 64bit) // Depending on the endianness of the system you could simply cast the array #define BYTES_MERGE_2_R2L(arr) (((arr)[1] << 8) | (arr)[0]) #define BYTES_MERGE_4_R2L(arr) (((arr)[3] << 24) | ((arr)[2] << 16) | ((arr)[1] << 8) | (arr)[0]) #define BYTES_MERGE_8_R2L(arr) (((uint64_t)(arr)[7] << 56) | ((uint64_t)(arr)[6] << 48) | ((uint64_t)(arr)[5] << 40) | ((uint64_t)(arr)[4] << 32) | ((uint64_t)(arr)[3] << 24) | ((uint64_t)(arr)[2] << 16) | ((uint64_t)(arr)[1] << 8) | ((uint64_t)(arr)[0])) struct BitWalk { byte* pos; uint32 bit_pos; }; inline void bits_walk(BitWalk* stream, uint32 bits_to_walk) noexcept { stream->bit_pos += bits_to_walk; stream->pos += stream->bit_pos / 8; stream->bit_pos %= 8; } inline void bits_flush(BitWalk* stream) noexcept { if (stream->bit_pos > 0) { stream->bit_pos = 0; ++stream->pos; } } // inline // uint8 bits_consume_8(BitWalk* stream, uint32 bits_to_consume) // { // uint8 result; // uint32 remaining = 8 - stream->bit_pos; // uint32 range_1 = bits_to_consume >= remaining // ? remaining // : bits_to_consume; // result = (*stream->pos >> (remaining - range_1)) & ((1 << range_1) - 1); // stream->bit_pos += range_1; // if (bits_to_consume < remaining) { // return result; // } // ++stream->pos; // stream->bit_pos = 0; // bits_to_consume -= range_1; // /* // uint32 full_bytes = bits_to_consume / 8; // if (full_bytes > 0) { // for (int i = 0; i < full_bytes; ++i) { // result = (result << 8) | *stream->pos; // ++stream->pos; // } // } // */ // if (bits_to_consume == 0) { // return result; // } // stream->bit_pos += bits_to_consume; // return (result << bits_to_consume) | ((*stream->pos >> (8 - bits_to_consume)) & ((1 << bits_to_consume) - 1)); // } // inline // uint16 bits_consume_16(BitWalk* stream, uint32 bits_to_consume) // { // uint16 result; // uint32 remaining = 8 - stream->bit_pos; // uint32 range_1 = bits_to_consume >= remaining // ? remaining // : bits_to_consume; // result = (*stream->pos >> (remaining - range_1)) & ((1 << range_1) - 1); // stream->bit_pos += range_1; // if (bits_to_consume < remaining) { // return result; // } // ++stream->pos; // stream->bit_pos = 0; // bits_to_consume -= range_1; // uint32 full_bytes = bits_to_consume / 8; // if (full_bytes > 0) { // for (int i = 0; i < full_bytes; ++i) { // result = (result << 8) | *stream->pos; // ++stream->pos; // } // } // uint32 range_2 = bits_to_consume - full_bytes * 8; // if (range_2 == 0) { // return result; // } // stream->bit_pos += range_2; // return (result << range_2) | ((*stream->pos >> (8 - range_2)) & ((1 << range_2) - 1)); // } // inline // uint32 bits_consume_32(BitWalk* stream, uint32 bits_to_consume) // { // uint32 result; // uint32 remaining = 8 - stream->bit_pos; // uint32 range_1 = bits_to_consume >= remaining // ? remaining // : bits_to_consume; // result = (*stream->pos >> (remaining - range_1)) & ((1 << range_1) - 1); // stream->bit_pos += range_1; // if (bits_to_consume < remaining) { // return result; // } // ++stream->pos; // stream->bit_pos = 0; // bits_to_consume -= range_1; // uint32 full_bytes = bits_to_consume / 8; // if (full_bytes > 0) { // for (int i = 0; i < full_bytes; ++i) { // result = (result << 8) | *stream->pos; // ++stream->pos; // } // } // uint32 range_2 = bits_to_consume - full_bytes * 8; // if (range_2 == 0) { // return result; // } // stream->bit_pos += range_2; // return (result << range_2) | ((*stream->pos >> (8 - range_2)) & ((1 << range_2) - 1)); // } // inline // uint64 bits_consume_64(BitWalk* stream, uint32 bits_to_consume) // { // uint64 result; // uint32 remaining = 8 - stream->bit_pos; // uint32 range_1 = bits_to_consume >= remaining // ? remaining // : bits_to_consume; // result = (*stream->pos >> (remaining - range_1)) & ((1 << range_1) - 1); // stream->bit_pos += range_1; // if (bits_to_consume < remaining) { // return result; // } // ++stream->pos; // stream->bit_pos = 0; // bits_to_consume -= range_1; // uint32 full_bytes = bits_to_consume / 8; // if (full_bytes > 0) { // for (int i = 0; i < full_bytes; ++i) { // result = (result << 8) | *stream->pos; // ++stream->pos; // } // } // uint32 range_2 = bits_to_consume - full_bytes * 8; // if (range_2 == 0) { // return result; // } // stream->bit_pos += range_2; // return (result << range_2) | ((*stream->pos >> (8 - range_2)) & ((1 << range_2) - 1)); // } // uint8 bits_peek_8(BitWalk* stream, uint32 bits_to_consume) { // byte* pos = stream->pos; // byte bit_pos = stream->bit_pos; // uint8 bits = bits_consume_8(stream, bits_to_consume); // stream->pos = pos; // stream->bit_pos = bit_pos; // return bits; // } // uint16 bits_peek_16(BitWalk* stream, uint32 bits_to_consume) { // byte* pos = stream->pos; // byte bit_pos = stream->bit_pos; // uint16 bits = bits_consume_16(stream, bits_to_consume); // stream->pos = pos; // stream->bit_pos = bit_pos; // return bits; // } // uint32 bits_peek_32(BitWalk* stream, uint32 bits_to_consume) { // byte* pos = stream->pos; // byte bit_pos = stream->bit_pos; // uint32 bits = bits_consume_32(stream, bits_to_consume); // stream->pos = pos; // stream->bit_pos = bit_pos; // return bits; // } // uint64 bits_peek_64(BitWalk* stream, uint32 bits_to_consume) { // byte* pos = stream->pos; // byte bit_pos = stream->bit_pos; // uint64 bits = bits_consume_64(stream, bits_to_consume); // stream->pos = pos; // stream->bit_pos = bit_pos; // return bits; // } static inline int32 find_first_set_bit(int32 value) noexcept { if (value == 0) { return 0; } #if __GNUC__ || __clang__ return __builtin_ffs(value); #elif _MSC_VER unsigned long index; if (_BitScanForward(&index, value)) { return (int32) index + 1; } else { return 0; } #else int32 index = 1; while (value) { if (value & 1) { return index; } value >>= 1; index++; } return 0; #endif } inline uint32 bits_reverse(uint32 data, uint32 count) noexcept { uint32 reversed = 0; for (uint32 i = 0; i <= (count / 2); ++i) { uint32 inv = count - i - 1; reversed |= ((data >> i) & 0x1) << inv; reversed |= ((data >> inv) & 0x1) << i; } return reversed; } static const byte BIT_COUNT_LOOKUP_TABLE[256] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 }; inline byte bits_count(uint64 data, bool use_abm = false) noexcept { if (use_abm) { return (byte) intrin_bits_count_64(data); } else { return BIT_COUNT_LOOKUP_TABLE[data & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 8) & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 16) & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 24) & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 32) & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 40) & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 48) & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 56) & 0xFF]; } } inline byte bits_count(uint32 data, bool use_abm = false) noexcept { if (use_abm) { return intrin_bits_count_32(data); } else { return BIT_COUNT_LOOKUP_TABLE[data & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 8) & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 16) & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 24) & 0xFF]; } } inline byte bits_count(uint16 data) noexcept { return BIT_COUNT_LOOKUP_TABLE[data & 0xFF] + BIT_COUNT_LOOKUP_TABLE[(data >> 8) & 0xFF]; } inline byte bits_count(uint8 data) noexcept { return BIT_COUNT_LOOKUP_TABLE[data]; } #endif